We report the growth and characterization of single-crystalline, crack-free, epitaxial (0001) ZnO films on (111) Si substrates using intervening epitaxial Lu2O3 buffer layers. The epitaxial orientation relationships are (0001)ZnO(111)Lu2O3(111)Si and [12¯10]ZnO[1¯10]Lu2O3[11¯0]Si. X-ray diffraction and transmission electron microscopy reveal that the ZnO films have high structural quality and an atomically sharp ZnOLu2O3 interface. Temperature-dependent photoluminescence measurements show optical properties comparable to ZnO single crystals. The films have a resistivity of 0.31Ωcm, an electron concentration of 2.5×1017cm3, and a mobility of 80cm2Vs at room temperature. The epitaxial growth of ZnO on Si represents a significant step toward the integration of ZnO-based multifunctional devices with Si electronics.

1.
K. J.
Hubbard
and
D. G.
Schlom
,
J. Mater. Res.
11
,
2757
(
1996
).
2.
K.
Iwata
,
P.
Fons
,
S.
Niki
,
A.
Yamada
,
K.
Matsubara
,
K.
Nakahara
,
T.
Tanabe
, and
H.
Takasu
,
J. Cryst. Growth
214
,
50
(
2000
).
3.
A.
Nahhas
,
H. K.
Kim
, and
J.
Blachere
,
Appl. Phys. Lett.
78
,
1511
(
2001
).
4.
M.
Kumar
,
R. M.
Mehra
,
A.
Wakahara
,
M.
Ishida
, and
A.
Yoshida
,
J. Appl. Phys.
93
,
3837
(
2003
).
5.
C. C.
Lin
,
S. Y.
Chen
,
S. Y.
Cheng
, and
H. Y.
Lee
,
Appl. Phys. Lett.
84
,
5040
(
2004
).
6.
T.
Onuma
,
S. F.
Chichibu
,
A.
Uedono
,
Y. Z.
Yoo
,
T.
Chikyow
,
T.
Sota
,
M.
Kawasaki
, and
H.
Koinuma
,
Appl. Phys. Lett.
85
,
5586
(
2004
).
7.
Y. F.
Chen
,
F. Y.
Jiang
,
L.
Wang
,
C. D.
Zheng
,
J. N.
Dai
,
Y.
Pu
, and
W. Q.
Fang
,
J. Cryst. Growth
275
,
486
(
2005
).
8.
L.
Wang
,
Y.
Pu
,
Y. F.
Chen
,
C. L.
Mo
,
W. Q.
Fang
,
C. B.
Xiong
,
J. N.
Dai
, and
F. Y.
Jiang
,
J. Cryst. Growth
284
,
459
(
2005
).
9.
X. N.
Wang
,
Y.
Wang
,
Z. X.
Mei
,
J.
Dong
,
Z. Q.
Zeng
,
H. T.
Yuan
,
T. C.
Zhang
,
X. L.
Du
,
J. F.
Jia
,
Q. K.
Xue
,
X. N.
Zhang
,
Z.
Zhang
,
Z. F.
Li
, and
W.
Lu
,
Appl. Phys. Lett.
90
,
151912
(
2007
).
10.
D. Y.
Lee
,
C. H.
Choi
, and
S. H.
Kim
,
J. Cryst. Growth
268
,
184
(
2004
).
11.
A. V.
Shevchenko
,
L. M.
Lopato
, and
I. E.
Kiryakova
,
Inorg. Mater.
20
,
1731
(
1984
).
12.
W.
Tian
,
L. F.
Edge
,
D. G.
Schlom
,
D. O.
Klenov
,
S.
Stemmer
,
V. V.
Afanas’ev
, and
A.
Stesmans
, (unpublished).
13.
L.
Marsella
and
V.
Fiorentini
,
Phys. Rev. B
69
,
172103
(
2004
).
14.
R. T.
Tung
,
J. C.
Bean
,
J. M.
Gibson
,
J. M.
Poate
, and
D. C.
Jacobson
,
Appl. Phys. Lett.
40
,
684
(
1982
).
15.
J.
Albertsson
,
S. C.
Abrahams
, and
A.
Kvick
,
Acta Crystallogr., Sect. B: Struct. Sci.
45
,
34
(
1989
).
16.
S.
Stecura
and
W. J.
Campbell
,
U. S. Bur. Mines. Rep. Invest.
5847
,
43
(
1961
).
17.
A.
Krost
,
A.
Dadgar
,
G.
Strassburger
, and
R.
Clos
,
Phys. Status Solidi A
200
,
26
(
2003
).
18.
G. K.
Williamson
and
W. H.
Hall
,
Acta Metall.
1
,
22
(
1953
).
19.
V.
Srikant
,
J. S.
Speck
, and
D. R.
Clarke
,
J. Appl. Phys.
82
,
4286
(
1997
).
20.
A.
Teke
,
U.
Ozgur
,
S.
Dogan
,
X.
Gu
,
H.
Morkoc
,
B.
Nemeth
,
J.
Nause
, and
H. O.
Everitt
,
Phys. Rev. B
70
,
195207
(
2004
).
21.
B. K.
Meyer
,
H.
Alves
,
D. M.
Hofmann
,
W.
Kriegseis
,
D.
Forster
,
F.
Bertram
,
J.
Christen
,
A.
Hoffmann
,
M.
Strassburg
,
M.
Dworzak
,
U.
Haboeck
, and
A. V.
Rodina
,
Phys. Status Solidi B
241
,
231
(
2004
).
22.
D. C.
Look
,
Design and Measurement in Electronic Engineering
(
Wiley
,
New York
,
1989
), pp.
76
85
and
116
.
23.
N. G.
Weimann
,
L. F.
Eastman
,
D.
Doppalapudi
,
H. M.
Ng
, and
T. D.
Moustakas
,
J. Appl. Phys.
83
,
3656
(
1998
).
You do not currently have access to this content.