Power transistor applications require alternative gate dielectrics on SiC that can operate at high fields without breaking down, as well as provide a high quality interface in order to minimize mobility degradation due to interface roughness. We have grown epitaxial MgO (111) crystalline layers on 6H-SiC (0001) substrates and characterized their structural and electrical properties. Measurements of gate leakage, breakdown fields, and dielectric properties make epitaxial MgO a potential candidate gate dielectric for SiC-based transistors.

1.
K.
Shenai
,
R. S.
Scott
, and
B. J.
Baliga
,
IEEE Trans. Electron Devices
36
,
1811
(
1989
).
2.
J. B.
Cassidy
and
R. W.
Johnson
,
Solid-State Electron.
39
,
1409
(
1996
);
A.
Elasse
and
T. P.
Chow
,
Proc. IEEE
90
,
969
(
2002
).
3.
M. M.
Mathur
and
J. A.
Cooper
, Jr.
,
IEEE Trans. Electron Devices
46
,
520
(
1999
).
4.
C. M.
Tanner
,
Y.-C.
Perng
,
C.
Frewin
,
S. E.
Saddow
, and
J. P.
Chang
,
Appl. Phys. Lett.
91
,
203510
(
2007
);
C. M.
Tanner
,
M. F.
Toney
,
J.
Lu
,
H. O.
Blom
,
M.
Sawkar-Mathur
,
M. A.
Tafesse
, and
J. P.
Chang
,
J. Appl. Phys.
102
,
104112
(
2007
).
5.
A.
Paskaleva
,
R. R.
Ciechonski
,
M.
Syväjärvi
,
E.
Atanassova
, and
R.
Yakimova
,
J. Appl. Phys.
97
,
124507
(
2005
);
M.
Avice
,
U.
Grossner
,
I.
Pintilie
,
B. G.
Svensson
,
M.
Servidori
,
R.
Nipoti
,
O.
Nilsen
, and
H.
Fjellvag
,
J. Appl. Phys.
102
,
054513
(
2007
).
6.
7.
R.
Mahapatra
,
A. K.
Chakraborty
,
A. B.
Horsfall
,
S.
Chattopadhyay
,
N. G.
Wright
, and
K. S.
Coleman
,
J. Appl. Phys.
102
,
024105
(
2007
).
8.
R.
Mahapatra
,
A. K.
Chakraborty
,
N.
Poolamai
,
A.
Horsfall
,
S.
Chattopadhyay
,
N. G.
Wright
,
K. S.
Coleman
,
P. G.
Coleman
, and
C. P.
Burrows
,
J. Vac. Sci. Technol. B
25
,
217
(
2007
).
9.
X. W.
Wang
,
Z. J.
Luo
, and
T. P.
Ma
,
IEEE Trans. Electron Devices
47
,
458
(
2000
);
L. M.
Lin
and
P. T.
Lai
,
J. Appl. Phys.
102
,
054515
(
2007
).
10.
P.
Zhao
, Rusli,
B. K.
Lok
,
F. K.
Lai
,
C. C.
Tin
,
J. H.
Zhao
, and
R. M.
Yar
,
Microelectron. Eng.
83
,
58
(
2006
).
11.
R.
Singh
,
Microelectron. Reliab.
46
,
713
(
2006
);
L. A.
Lipkin
and
J. W.
Palmour
,
IEEE Trans. Electron Devices
46
,
525
(
1999
).
12.
II-VI and I-VII Compounds; Semimagnetic Compounds
,
Landolt-Börnstein, New Series, Group III
, Vol.
41B
, edited by
O.
Madelung
,
U.
Rössler
, and
M.
Schulz
(
Springer
,
Heidelberg
,
1999
).
13.
T. L.
Goodrich
,
J.
Parisi
,
Z.
Cai
, and
K. S.
Ziemer
,
Appl. Phys. Lett.
90
,
042910
(
2007
);
T. L.
Goodrich
,
Z.
Cai
,
M. D.
Losego
,
J.-P.
Maria
, and
K. S.
Ziemer
,
J. Vac. Sci. Technol. B
25
,
1033
(
2007
).
14.
D. O.
Stodilka
,
A. P.
Gerger
,
M.
Hlad
,
P.
Kumar
,
B. P.
Gila
,
R.
Singh
,
C. R.
Abenrnathy
,
S. J.
Pearton
, and
F.
Ren
,
Silicon Carbide—Materials, Processing and Devices
,
MRS Symposia Proceedings No. 911
(
Materials Research Society
,
Pittsburgh
,
2006
), p.
347
.
15.
E. H.
Nicollian
and
A.
Goetzberger
,
Bell Syst. Tech. J.
46
,
1055
(
1967
).
16.
N. S.
Saks
,
S. S.
Mani
, and
A. K.
Agarwal
,
Appl. Phys. Lett.
76
,
2250
(
2000
);
J. A.
Cooper
, Jr.
,
M. R.
Melloch
,
R.
Singh
,
A.
Agarwal
, and
J. W.
Palmour
,
IEEE Trans. Electron Devices
49
,
658
(
2002
).
17.

Capacitance values measured at room temperature using the high temperature probe station are slightly (10%) smaller compared to the standard probe station due to an instrumental series capacitance.

18.
NIST Database 82: Electron EAL, U.S. Department of Commerce.
19.
C. E.
Weitzel
,
J. W.
Palmour
,
C. H.
Carter
,
K.
Moore
,
K. J.
Nordquist
,
S.
Allen
,
C.
Thero
, and
M.
Bhatnagar
,
IEEE Trans. Electron Devices
43
,
1732
(
1996
).
20.
E. K.
Beauchamp
,
J. Am. Ceram. Soc.
54
,
484
(
1971
);
T. J.
Lewis
and
A. J.
Wright
,
J. Phys. D
3
,
1329
(
1970
).
You do not currently have access to this content.