We report on the role of intrinsic (adhesion force and wettability) and extrinsic (temperature and pressure) conditions to fabricate dense nanoscale patterns in detachment nanolithography. A phase diagram is constructed by using a rigiflex polymeric mold, an organic film, and silicon or gold substrate. Operating conditions in terms of surface tensions and processing parameters are discussed along with comparison of the minimum resolution with a simple theory.

1.
K. J.
Lee
,
M. J.
Motala
,
M. A.
Meitl
,
W. R.
Childs
,
E.
Menard
,
A. K.
Shim
,
J. A.
Rogers
, and
R. G.
Nuzzo
,
Adv. Mater. (Weinheim, Ger.)
17
,
2332
(
2005
);
J.
Zaumseil
,
M. A.
Meitl
,
J. W. P.
Hsu
,
B. R.
Acharya
,
K. W.
Baldwin
,
Y. L.
Loo
, and
J. A.
Rogers
,
Nano Lett.
3
,
1223
(
2003
);
Y. L.
Loo
,
T.
Someya
,
K. W.
Baldwin
,
Z. N.
Bao
,
P.
Ho
,
A.
Dodabalapur
,
H. E.
Katz
, and
J. A.
Rogers
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
10252
(
2002
).
[PubMed]
2.
C.
Kim
,
P. E.
Burrows
, and
S. R.
Forrest
,
Science
288
,
831
(
2000
).
3.
S. M.
Seo
,
J. Y.
Park
, and
H. H.
Lee
,
Appl. Phys. Lett.
86
,
133114
(
2005
).
4.
Z.
Wang
,
J.
Zhang
,
R.
Xing
,
J. F.
Yuan
,
D. H.
Yan
, and
Y. C.
Han
,
J. Am. Chem. Soc.
125
,
15278
(
2003
).
5.
J. H.
Choi
,
D.
Kim
,
P. J.
Yoo
, and
H. H.
Lee
,
Adv. Mater. (Weinheim, Ger.)
17
,
166
(
2005
).
6.
S. J.
Choi
,
P. J.
Yoo
,
S. J.
Baek
,
T. W.
Kim
, and
H. H.
Lee
,
J. Am. Chem. Soc.
126
,
7744
(
2004
).
7.
M. A.
Meitl
,
Z. T.
Zhu
,
V.
Kumar
,
K. J.
Lee
,
X.
Feng
,
Y. Y.
Huang
,
I.
Adesida
,
R. G.
Nuzzo
, and
J. A.
Rogers
,
Nat. Mater.
5
,
33
(
2006
).
8.
J. K.
Kim
,
J. W.
Park
,
H.
Yang
,
M.
Choi
,
J. H.
Choi
, and
K. Y.
Suh
,
Nanotechnology
17
,
940
(
2006
).
9.
Souheng
Wu
,
Polymer Interface and Adhesion
(
Dekker
,
New York
,
1982
), p.
10
.
10.
K. Y.
Suh
,
J.
Park
, and
H. H.
Lee
,
J. Chem. Phys.
116
,
7714
(
2002
).
11.

The calculated surface energies from the literature are as follows: γAlq3=36.4mJm2, γnovolac=44.2mJm2, γNPB=31.8mJm2, γITO=32.4mJm2, γAl=44.9mJm2, γSi=63.2mJm2, and γAu=43.9mJm2. Also, work of adhesion values are WepoxyAlq3=64.5mJm2, WAlq3ITO=41.0mJm2, WPDMSAlq3=57.6mJm2, WPUAnovolac=81.7mJm2, and WnovolacAl=78.2mJm2. According to our experiment results, the values are WPUA(high)NPB=72.8mJm2, WPUA(low)NPB=39.3mJm2, WNPBSi=59.7mJm2, and WNPBAu=71.7mJm2. The calculated interface energies are as follows: γAlq3ITO=27.8mJm2, γnovolacAl=10.9mJm2, and γNPBSi=35.3mJm2, and γNPBSi=4.0mJAu2. The spreading coefficients are: 31.8mJm2 [Alq3 on indium tin oxide (ITO) coated glass], 10.2mJm2 (novolac on aluminum coated glass), 3.9mJm2 (NPB on silicon substrate), and +8.1mJm2. (NPB on gold coated silicon substrate).

12.
J. R.
Barber
,
Elasticity
(
Kluwer
,
Dordrecht, Boston
,
1992
), p.
223
.
13.
C.
Kim
,
Y.
Cao
,
W. O.
Soboyejo
, and
S. R.
Forrest
,
J. Appl. Phys.
97
,
113512
(
2005
).
14.
Y. G. Y.
Huang
,
W. X.
Zhou
,
K. J.
Hsia
,
E.
Menard
,
J. U.
Park
,
J. A.
Rogers
, and
A. G.
Alleyne
,
Langmuir
21
,
8058
(
2005
).
You do not currently have access to this content.