The possibility of inducing indirect-to-direct band gap transition in silicon nanowires (SiNWs) by changing wire diameter is well known. Here, we show that for ⟨112⟩-oriented SiNWs indirect-to-direct band gap transition can be tuned simply by changing the wire cross-section shape or the cross-sectional aspect ratio of the (111) and (110) facets that enclose the wire, instead of changing the wire diameter. The cross-sectional aspect ratio must be smaller than 0.5 in order to maintain a direct band gap, indicating the important role of the (110) facet.

1.
A. H.
Mahan
,
R.
Biswas
,
L. M.
Gedvilas
,
D. L.
Williamson
, and
B. C.
Pan
,
J. Appl. Phys.
96
,
3818
(
2004
).
2.
C. G.
Van de Walle
and
R. A.
Street
,
Phys. Rev. B
51
,
10615
(
1995
).
3.
Y.
Cui
and
C. M.
Lieber
,
Science
291
,
851
(
2001
).
4.
L. T.
Canham
,
Appl. Phys. Lett.
57
,
1046
(
1990
).
5.
D. D. D.
Ma
,
C. S.
Lee
,
F. C. K.
Au
,
S. Y.
Tong
, and
S. T.
Lee
,
Science
299
,
1874
(
2003
).
6.
Y. F.
Zhao
and
B. I.
Yakobson
,
Phys. Rev. Lett.
91
,
035501
(
2003
).
7.
T.
Dumitrica
,
M.
Hua
, and
B. I.
Yakobson
,
Phys. Rev. B
70
,
241303
(R) (
2004
).
8.
R. Q.
Zhang
,
Y.
Lifshitz
, and
S. T.
Lee
,
Adv. Mater. (Weinheim, Ger.)
15
,
636
(
2003
).
9.
N. R. B.
Colemann
,
M. A.
Morris
,
T. R.
Spalding
, and
J. D.
Holmes
,
J. Am. Chem. Soc.
123
,
187
(
2001
).
10.
J. D.
Holmes
,
K. P.
Johnston
,
R. C.
Doty
, and
B. A.
Korgel
,
Science
287
,
1471
(
2000
).
11.
Y.
Wu
,
Y.
Cui
,
L.
Huynh
,
C. J.
Barrelet
,
D. C.
Bell
, and
C. M.
Lieber
,
Nano Lett.
4
,
433
(
2004
).
12.
X. Y.
Zhao
,
C. M.
Wei
,
L.
Yang
, and
M. Y.
Chou
,
Phys. Rev. Lett.
92
,
236805
(
2004
).
13.
R.
Rurali
and
N.
Lorente
,
Phys. Rev. Lett.
94
,
026805
(
2005
).
14.
S.
Piscanec
,
M.
Cantoro
,
A. C.
Ferrari
,
J. A.
Zapien
,
Y.
Lifdhitz
,
S. T.
Lee
,
S.
Hofmann
, and
J.
Robertson
,
Phys. Rev. B
68
,
241312
(
2003
).
15.
M. P.
Persson
and
H. Q.
Xu
,
Nano Lett.
4
,
2409
(
2004
).
16.
D. P.
Yu
,
Q. L.
Hang
,
Y.
Ding
,
H. Z.
Zhang
,
Z. G.
Bai
,
J. J.
Wang
,
Y. H.
Zou
,
W.
Qian
,
G. C.
Xiong
, and
S. Q.
Feng
,
Appl. Phys. Lett.
73
,
3076
(
1998
).
17.
U.
Landman
,
R. N.
Barnett
,
A. G.
Scherbakov
, and
P.
Avouris
,
Phys. Rev. Lett.
85
,
1958
(
2000
).
18.
M.
Menon
and
E.
Richter
,
Phys. Rev. Lett.
83
,
792
(
1999
).
19.
B.-X.
Li
,
P.-L.
Cao
,
R. Q.
Zhang
, and
S. T.
Lee
,
Phys. Rev. B
65
,
125305
(
2002
).
20.
A. J.
Read
,
R. J.
Needs
,
K. J.
Nash
,
L. T.
Canham
,
P. D. J.
Calcott
, and
A.
Qteish
,
Phys. Rev. Lett.
69
,
1232
(
1992
).
21.
H.
Scheel
,
S.
Reich
, and
C.
Thomsen
,
Phys. Status Solidi B
242
,
2374
(
2005
).
22.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
23.
A. J.
Lu
,
R. Q.
Zhang
, and
S. T.
Lee
,
Nanotechnology
19
,
35708
(
2008
).
24.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. Lett.
55
,
1418
(
1985
).
25.
X.
Gonze
,
J.-M.
Beuken
,
R.
Caracas
,
F.
Detraux
,
M.
Fuchs
,
G.-M.
Rignanese
,
L.
Sindic
,
M.
Verstraete
,
G.
Zerah
,
F.
Jollet
,
M.
Torrent
,
A.
Roy
,
M.
Mikami
,
Ph.
Ghosez
,
J.-Y.
Raty
, and
D. C.
Allan
,
Comput. Mater. Sci.
25
,
478
(
2002
).
26.
W. G.
Aulbur
,
L.
Jonsson
, and
J. W.
Wilkins
,
Solid State Phys.
54
,
1
(
2000
).
27.
A. J.
Lu
and
R. Q.
Zhang
,
Solid State Commun.
145
,
275
(
2008
).
28.
R. Q.
Zhang
,
Y.
Lifshitz
,
D. D. D.
Ma
,
Y. L.
Zhao
,
Th.
Frauenheim
,
S. T.
Lee
, and
S. Y.
Tong
,
J. Chem. Phys.
123
,
144703
(
2005
).
You do not currently have access to this content.