Operation at temperatures well above ambient is desired for applications such as smart structures integrated within aircraft and space vehicles. Piezoelectric yttrium calcium oxyborate single crystal YCa4O(BO3)3 (YCOB) was found to exhibit no phase transition until its melting temperature around 1500°C. The temperature characteristics of the resonance frequency, electromechanical coupling, and dielectric permittivity were studied in the temperature range of 30950°C for different orientations. The electrical resistivity at 800°C was found to be greater than 2×108Ωcm. Together with its temperature independent electromechanical coupling factor (12%) and engineered resonance frequency behavior, these make YCOB crystals excellent candidates for sensing applications at ultra high temperatures.

1.
T. R.
Shrout
,
R.
Eitel
, and
C. A.
Randall
,
Piezoelectric Materials in Devices
, edited by
N.
Setter
(
EPFL Swiss Federal Institute of Technology
,
Switzerland
,
2002
), p.
413
.
2.
R. C.
Turner
,
P. A.
Fuierer
,
R. E.
Newnham
, and
T. R.
Shrout
,
Appl. Acoust.
41
,
299
(
1994
).
3.
M. J.
Schulz
,
M. J.
Sundaresan
,
J.
McMichael
,
D.
Clayton
,
R.
Sadler
, and
B.
Nagel
,
J. Intell. Mater. Syst. Struct.
14
,
693
(
2003
).
4.
D.
Damjanovic
,
Curr. Opin. Solid State Mater. Sci.
3
,
469
(
1998
).
5.
S. J.
Zhang
,
J.
Luo
,
D. W.
Snyder
, and
T. R.
Shrout
,
Handbook of Advanced Dielectric, Piezoelectric, and Ferroelectric Materials: Synthesis, Characterization and Applications
, edited by
Z. G.
Ye
, (
Woodhead
,
Cambridge
,
2008
), p.
130
.
6.
H.
Kawanaka
,
H.
Takeda
,
K.
Shimamura
, and
T.
Fukuda
,
J. Cryst. Growth
183
,
274
(
1998
).
7.
H.
Ogi
,
N.
Nakamura
,
K.
Sato
,
M.
Hirao
, and
S.
Uda
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
553
(
2003
).
8.
J.
Bohm
,
E.
Chilla
,
C.
Flannery
,
H.
Frohlich
,
T.
Hauke
,
R.
Heimann
,
M.
Hengst
, and
U.
Straube
,
J. Cryst. Growth
216
,
293
(
2000
).
9.
H.
Fritze
and
H. L.
Tuller
,
Appl. Phys. Lett.
78
,
976
(
2001
).
10.
E.
Philippot
,
A.
Ibanez
,
A.
Goiffon
,
M.
Cochez
,
A.
Zarka
,
B.
Capell
,
J.
Schwartzel
, and
J.
Detaint
,
J. Cryst. Growth
130
,
195
(
1993
).
11.
C.
Reiter
,
P.
Krempl
,
H.
Thanner
,
W.
Wallnofer
, and
P.
Worsh
,
Ann. Chim. (Paris)
26
,
91
(
2001
).
12.
P.
Krempl
,
G.
Schleinzer
, and
W.
Wallnofer
,
Sens. Actuators, A
61
,
361
(
1997
).
13.
Y. T.
Fei
,
B. H. T.
Chai
,
C. A.
Ebbers
,
Z. M.
Liao
,
K. I.
Schaffers
, and
P.
Thelin
,
J. Cryst. Growth
290
,
301
(
2006
).
14.
S. J.
Zhang
,
J. G.
Zhang
,
Z. X.
Cheng
,
G. Y.
Zhou
,
J. R.
Han
, and
H. C.
Chen
,
J. Cryst. Growth
203
,
168
(
1999
).
15.
G.
Aka
,
F.
Salin
, and
D.
Pelenc
,
J. Opt. Soc. Am. B
14
,
2238
(
1997
).
16.
S. J.
Zhang
,
Z. X.
Cheng
, and
H. C.
Chen
,
Defect Diffus. Forum
,
186-187
,
79
(
2000
).
17.
W. W.
Ge
,
H. J.
Zhang
,
J. Y.
Wang
,
M. H.
Jiang
,
S. Q.
Sun
,
D. G.
Ran
,
H. R.
Xia
, and
R. I.
Boughton
,
J. Appl. Crystallogr.
40
,
125
(
2007
).
18.
S. J.
Zhang
,
Z. X.
Cheng
,
J. R.
Han
,
G. Y.
Zhou
,
Z. S.
Shao
,
C. Q.
Wang
,
Y. T.
Chow
, and
H. C.
Chen
,
J. Cryst. Growth
206
,
197
(
1999
).
19.
J.
Wang
,
X.
Hu
,
X.
Yin
,
R.
Song
,
J.
Wei
,
Z.
Shao
,
Y.
Liu
,
M.
Jiang
,
Y.
Tian
,
J.
Jiang
, and
W.
Huang
,
J. Mater. Res.
16
,
790
(
2001
).
20.
H.
Takeda
,
H.
Sako
,
H.
Shimizu
,
K.
Kodama
,
M.
Nishida
,
H.
Nakao
,
T.
Nishida
,
S.
Okamura
, and
T.
Shikida
,
Jpn. J. Appl. Phys., Part 1
42
,
6081
(
2003
).
21.
H.
Shimizu
,
T.
Nishida
,
M.
Nishida
,
H.
Takeda
, and
T.
Shiosaki
,
Jpn. J. Appl. Phys., Part 1
44
,
7059
(
2005
).
22.
C.
Pawlaczyk
,
E.
Markiewicz
,
A.
Klos
,
W.
Hofman
, and
A.
Pajaczkowska
,
Phys. Status Solidi A
203
,
2103
(
2006
).
23.
Y.
Qing
and
B. H. T.
Chai
,
J. Cryst. Growth
197
,
228
(
1999
).
24.
IEEE Standard on Piezoelectricity
, ANSI/EEE Standard 176, New York,
1987
.
You do not currently have access to this content.