Polymer microring resonators for low-noise, wideband ultrasound detection are presented. Using a nanoimprinting technique, we fabricated polymer microring resonators with a quality factor of 6000 resulting in high sensitivity to ultrasound. A noise-equivalent pressure of 0.23kPa over 175MHz and a detection bandwidth of over 90MHz at 3dB were measured. These results demonstrate the potential of polymer microring resonators for high-frequency ultrasound and photoacoustic imaging. For a typical photoacoustic imaging test case, the high sensitivity demonstrated in these devices would increase imaging depth by a factor of 3 compared to state-of-the-art polyvinylidene fluoride detectors.

1.
R. A.
White
,
C. E.
Donayre
,
G. E.
Kopchok
,
I.
Walot
,
C. M.
Mehinger
,
E. P.
Wilson
, and
C.
deVirgilio
,
World J. Surg.
20
,
622
(
1996
).
2.
A.
Chak
,
Endoscopy
32
,
146
(
2000
).
3.
F. S.
Foster
,
M. Y.
Zhang
,
Y. Q.
Zhou
,
G.
Liu
,
J.
Mehi
,
E.
Cherin
,
K. A.
Harasiewicz
,
B. G.
Starkoski
,
L.
Zan
,
D. A.
Knapik
, and
S. L.
Adamson
,
Ultrasound Med. Biol.
28
,
1165
(
2002
).
4.
M.
Vogt
,
K.
Kaspar
,
P.
Altmeyer
,
K.
Hoffmann
, and
S.
El Gammal
,
Frequenz
55
,
12
(
2001
).
5.
D. J.
Coleman
,
R. H.
Silverman
,
A.
Chabi
,
M. J.
Rondeau
,
K. K.
Shung
,
J.
Cannata
, and
H.
Lincoff
,
Ophthalmology
111
,
1344
(
2004
).
6.
R. J.
Zemp
,
R.
Bitton
,
M.-L.
Li
,
K. K.
Shung
,
G.
Stoica
, and
L. V.
Wang
,
J. Biomed. Opt.
12
,
010501
(
2007
).
7.
H. F.
Zhang
,
K.
Maslov
,
M.
Sivaramakrishnan
,
G.
Stoica
, and
L. V.
Wang
,
Appl. Phys. Lett.
90
,
053901
(
2007
).
8.
S.
Sethuraman
,
J. H.
Amirian
,
S. H.
Litovsky
,
R. W.
Smalling
, and
S. Y.
Emelianov
,
Opt. Express
15
,
16657
(
2007
).
9.
Y.
Hou
,
J.-S.
Kim
,
S.
Ashkenazi
,
S.-W.
Huang
,
L. J.
Guo
, and
M.
O’Donnell
,
Appl. Phys. Lett.
91
,
073507
(
2007
).
10.
J.-P.
Monchalin
,
Appl. Phys. Lett.
47
,
14
(
1985
).
11.
J. D.
Hamilton
,
T.
Buma
,
M.
Spisar
, and
M.
O’Donnell
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
160
(
2000
).
12.
V.
Wilkens
,
J. Acoust. Soc. Am.
113
,
1431
(
2003
).
13.
S.
Ashkenazi
,
C.-Y.
Chao
,
L. J.
Guo
, and
M.
O’Donnell
,
Appl. Phys. Lett.
85
,
5418
(
2004
).
14.
S.
Ashkenazi
,
Y.
Hou
,
T.
Buma
, and
M.
O’Donnell
,
Appl. Phys. Lett.
86
,
134102
(
2005
).
15.
M.
Klann
and
C.
Koch
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
1546
(
2005
).
16.
E.
Zhang
and
P.
Beard
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
1330
(
2006
).
17.
E. Z. Y.
Zhang
and
P.
Beard
,
Proc. SPIE
5320
,
222
(
2004
).
18.
C.-Y.
Chao
,
S.
Ashkenazi
,
S.-W.
Huang
,
M.
O’Donnell
, and
L. J.
Guo
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
957
(
2007
).
19.
A.
Maxwell
,
S.-W.
Huang
,
T.
Ling
,
J.-S.
Kim
,
S.
Ashkenazi
, and
L. J.
Guo
,
IEEE J. Sel. Top. Quantum Electron.
14
,
191
(
2008
).
20.
K.
Okamoto
,
Fundamentals of Optical Waveguides
(
Academic
,
San Diego
,
2000
).
21.
C.-Y.
Chao
and
L. J.
Guo
,
J. Vac. Sci. Technol. B
20
,
2862
(
2002
).
22.
G. J.
Diebold
,
T.
Sun
, and
M. I.
Khan
,
Phys. Rev. Lett.
67
,
3384
(
1991
).
23.
T.
Buma
,
M.
Spisar
, and
M.
O’Donnell
,
Proc.-IEEE Ultrason. Symp.
2
,
1253
(
1999
).
24.
J. M.
Cannata
,
J. A.
Williams
,
Q.
Zhou
,
T. A.
Ritter
, and
K. K.
Shung
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
224
(
2006
).
25.
A. A.
Oraevsky
and
A. A.
Karabutov
,
Proc. SPIE
3916
,
228
(
2000
).
26.
G.
Elert
,
The Physics Hypertextbook
(http://hypertextbook.com/physics/thermal/expansion/).
You do not currently have access to this content.