Self-gating leading to rectification action is frequently observed in two-terminal devices built from individual or networked single-walled carbon nanotubes (SWCNTs) on oxidized Si substrates. The current-voltage (I-V) curves of these SWCNT devices remain unaltered when switching the measurement probes. For ordinary diodes, the I-V curves are symmetric about the origin of the coordinates when exchanging the probes. Numerical simulations suggest that the self-gated rectification action should result from the floating semiconducting substrate which acts as a back gate. Self-gating effect is clearly not unique for SWCNT devices. As expected, it is absent for devices fabricated on insulating substrates.

1.
R. H.
Baughman
,
A. A.
Zakhidov
, and
W. A.
Heer
,
Science
297
,
787
(
2002
).
2.
X.
Duan
,
C.
Niu
,
V.
Sahi
,
J.
Chen
,
J. W.
Parce
,
S.
Empedocles
, and
J. L.
Goldman
,
Nature (London)
425
,
274
(
2003
).
3.
S. J.
Tans
,
A. R. M.
Verschueren
, and
C.
Dekker
,
Nature (London)
393
,
49
(
1998
).
4.
R.
Martel
,
T.
Schmidt
,
H. R.
Shea
,
T.
Hertel
, and
Ph.
Avouris
,
Appl. Phys. Lett.
73
,
2447
(
1998
).
5.
E. S.
Snow
,
J. P.
Novak
,
P. M.
Campbell
, and
D.
Park
,
Appl. Phys. Lett.
82
,
2145
(
2003
).
6.
M. S.
Fuhrer
,
J.
Nygård
,
L.
Shih
,
M.
Forero
,
Y.-G.
Yoon
,
M. S. C.
Mazzoni
,
H. J.
Choi
,
J.
Ihm
,
S. G.
Louie
,
A.
Zettl
, and
P. L.
McEuen
,
Science
288
,
494
(
2000
).
7.
Z.
Yao
,
H. W. C.
Postma
,
L.
Balents
, and
C.
Dekker
,
Nature (London)
402
,
273
(
1999
).
8.
C.
Zhou
,
J.
Kong
,
E.
Yenilmez
, and
H.
Dai
,
Science
290
,
1552
(
2000
).
9.
J. U.
Lee
,
Appl. Phys. Lett.
87
,
073101
(
2005
).
10.
H. M.
Manohara
,
E. W.
Wong
,
E.
Schlecht
,
B. D.
Hunt
, and
P. H.
Siegel
,
Nano Lett.
5
,
1469
(
2005
).
11.
C.
Lu
,
L.
An
,
Q.
Fu
,
J.
Liu
,
H.
Zhang
, and
J.
Murduck
,
Appl. Phys. Lett.
88
,
133501
(
2006
).
12.
M. H.
Yang
,
K. B. K.
Teo
,
W. I.
Milne
, and
D. G.
Hasko
,
Appl. Phys. Lett.
87
,
253116
(
2005
).
13.
B.-K.
Kim
,
J.-J.
Kim
,
H.-M.
So
,
K.-J.
Kong
,
H.
Chang
,
J.-O.
Lee
, and
N.
Park
,
Appl. Phys. Lett.
89
,
243115
(
2006
).
14.
R. D.
Antonov
and
A. T.
Johnson
,
Phys. Rev. Lett.
83
,
3274
(
1999
).
15.
Y.
Zhou
,
A.
Gaur
,
S.-H.
Hur
,
C.
Kocabas
,
M. A.
Meitl
,
M.
Shim
, and
J. A.
Rogers
,
Nano Lett.
4
,
2031
(
2004
).
16.
Z.-B.
Zhang
,
X.-J.
Liu
,
E. E. B.
Campbell
, and
S.-L.
Zhang
,
J. Appl. Phys.
98
,
056103
(
2005
).
17.
W. R.
Small
,
C. D.
Walton
,
J.
Loos
, and
M. I. H.
Panhuis
,
J. Phys. Chem. B
110
,
13029
(
2006
).
18.
Y.
Huang
,
X.
Duan
,
Q.
Wei
, and
C. M.
Lieber
,
Science
291
,
630
(
2001
).
19.
Z.-B.
Zhang
,
S.-L.
Zhang
, and
E. E. B.
Campbell
,
Chem. Phys. Lett.
421
,
11
(
2006
).
20.
Z.
Fan
,
D.
Wang
,
P.-C.
Chang
,
W.-Y.
Tseng
, and
J. G.
Lu
,
Appl. Phys. Lett.
85
,
5923
(
2004
).
21.
K. S.
McElroy
, NNIN REU Research Accomplishments,
134
(
2005
).
22.
Y.
Huang
,
X.
Duan
,
Y.
Cui
, and
C. M.
Liber
,
Nano Lett.
2
,
101
(
2002
).
23.
V.
Skákalová
,
A. B.
Kaiser
,
Y.-S.
Woo
, and
S.
Roth
,
Phys. Rev. B
74
,
085403
(
2006
).
24.
R.
Seidel
,
M.
Liebau
,
G. S.
Duesberg
,
F.
Kreupl
,
E.
Unger
,
A. P.
Graham
,
W.
Hoenlein
, and
W.
Pompe
,
Nano Lett.
3
,
965
(
2003
).
25.
Y.-F.
Chen
and
M. S.
Fuhrer
,
Phys. Rev. Lett.
95
,
236803
(
2005
).
You do not currently have access to this content.