The annealing kinetics of the so-called E4/E5 center or E4a/E4b center in electron-irradiated Si particle detectors has been studied at four different temperatures from 23to65°C using deep-level transient spectroscopy (DLTS). The center gives rise to two energy levels at 0.37 and 0.45eV below the conduction-band edge, and the annealing process is found to be of dissociative nature with an energy barrier of 1.11.2eV. A striking similarity of the annealing rates (and kinetics) is revealed with that obtained for the 936-cm1 infrared absorption band, studied by Fourier-transform infrared spectroscopy using identical type of Si material as in the DLTS study but irradiated with neutrons. The result strongly suggest that the E4/E5 levels and the 936-cm1 band originate from the same defect, and the latter has been attributed to a di-interstitial-oxygen (I2O) complex. The E4/E5 center plays a crucial role for the detrimental leakage current in irradiated Si particle detectors, and an assignment of E4/E5 to I2O implies that oxygen-lean Si material (<1014cm3) should be advantageous to enhance detector performance.

1.
S.
Stapnes
,
Nature (London)
448
,
290
(
2007
).
3.
R. M.
Fleming
,
C. H.
Seager
,
D. V.
Lang
,
E.
Bielejec
, and
J. M.
Campbell
,
Appl. Phys. Lett.
90
,
172105
(
2007
).
4.
M.
Mikelsen
,
E. V.
Monakhov
,
G.
Alfieri
,
B. S.
Avset
, and
B. G.
Svensson
,
Phys. Rev. B
72
,
195207
(
2005
).
5.
E. V.
Monakhov
,
A.
Ulyashin
,
G.
Alfieri
,
A. Yu.
Kuznetsov
,
B. S.
Avset
, and
B. G.
Svensson
,
Phys. Rev. B
69
,
153202
(
2004
).
6.
G.
Alfieri
,
E. V.
Monakhov
,
B. S.
Avset
, and
B. G.
Svensson
,
Phys. Rev. B
68
,
233202
(
2003
).
7.
V. P.
Markevich
,
A. R.
Peaker
,
S. B.
Lastovskii
,
L. I.
Murin
, and
J. L.
Lindström
,
J. Phys.: Condens. Matter
15
,
S2779
(
2003
).
8.
J. H.
Bleka
,
E. V.
Monakhov
,
B. G.
Svensson
, and
B. S.
Avset
,
Phys. Rev. B
76
,
233204
(
2007
).
9.
M.
Moll
, Ph.D. thesis,
University of Hamburg
,
1999
.
10.
M.
Ahmed
,
S. J.
Watts
,
J.
Matheson
, and
A.
Holmes-Siedle
,
Nucl. Instrum. Methods Phys. Res. A
457
,
588
(
2001
).
11.
M.
Moll
,
E.
Fretwurst
,
M.
Kuhnke
, and
G.
Lindström
,
Nucl. Instrum. Methods Phys. Res. B
186
,
100
(
2002
).
12.
B. G.
Svensson
,
K.-H.
Rydén
, and
B. M. S.
Lewerentz
,
J. Appl. Phys.
66
,
1699
(
1989
).
13.
A. A.
Istratov
,
J. Appl. Phys.
82
,
2965
(
1997
).
14.
S. D.
Brotherton
and
P.
Bradley
,
J. Appl. Phys.
53
,
5720
(
1982
).
15.
L. W.
Song
,
X. D.
Zhan
,
B. W.
Benson
, and
G. D.
Watkins
,
Phys. Rev. B
42
,
5765
(
1990
).
16.
N.
Keskitalo
,
A.
Hallén
,
J.
Lalita
, and
B. G.
Svensson
,
Mater. Res. Soc. Symp. Proc.
469
,
233
(
1997
).
17.
A. O.
Evwaraye
and
E.
Sun
,
J. Appl. Phys.
47
,
3776
(
1976
).
18.
L. C.
Kimerling
,
Radiation Effects in Semiconductors 1976
(
IOP
,
Bristol
,
1977
), p.
221
.
19.
B. G.
Svensson
and
M.
Willander
,
J. Appl. Phys.
62
,
2758
(
1987
).
20.
J. W.
Corbett
,
Electron Radiation Damage in Semiconductors and Metals
(
Academic
,
New York
,
1966
), p.
39
.
21.
J.
Hermansson
,
L. I.
Murin
,
T.
Hallberg
,
V. P.
Markevich
,
J. L.
Lindström
,
M.
Kleverman
, and
B. G.
Svensson
,
Physica B
302
,
188
(
2001
).
22.
G.
Davies
,
S.
Hayama
,
L.
Murin
,
R.
Krause-Rehberg
,
V.
Bondarenko
,
A.
Sengupta
,
C.
Da Via
, and
A.
Karpenko
,
Phys. Rev. B
73
,
165202
(
2006
).
23.
L.
Vines
(unpublished).
You do not currently have access to this content.