We study the use of vibration localization in large arrays of mechanically coupled, nearly identical microcantilevers for ultrasensitive mass detection and identification. We demonstrate that eigenmode changes in such an array can be two to three orders of magnitude greater than relative changes in resonance frequencies when an analyte mass is added. Moreover, the changes in eigenmodes are unique to the cantilever to which mass is added, thereby providing a characteristic “fingerprint” that identifies the particular cantilever where mass has been added. This opens the door to ultrasensitive detection and identification of multiple analytes with a single coupled array.

1.
F. M.
Battiston
,
J. P.
Ramseyer
,
H. P.
Lang
,
M. K.
Baller
,
Ch.
Gerber
,
J. K.
Gimzewski
, and
H.-J.
Guntherodt
,
Sens. Actuators B
77
,
122
(
2001
).
2.
B.
Rogers
,
L.
Manning
,
M.
Jones
,
T.
Sulchek
,
K.
Murray
,
B.
Beneschott
,
J. D.
Adams
,
Z.
Hu
,
T.
Thundat
,
H.
Cavazos
, and
S. C.
Minne
,
Rev. Sci. Instrum.
74
,
4899
(
2003
).
3.
J.
Mertens
,
E.
Finot
,
M. H.
Nadal
,
V.
Eyraud
,
O.
Heintz
, and
E.
Bourillot
,
Sens. Actuators B
99
,
58
(
2004
).
4.
L. M.
Lechuga
,
J.
Tamayo
,
M.
Alvarez
,
L. G.
Carrascosa
,
A.
Yufera
,
R.
Doldan
,
E.
Peralias
,
A.
Rueda
,
J. A.
Plaza
,
K.
Zinoviev
,
C.
Dominguez
,
A.
Zaballos
,
M.
Moreno
,
C.
Martinez
,
D.
Wenn
,
N.
Harris
,
C.
Bringer
,
V.
Bardinal
,
T.
Camps
,
C.
Vergnenegre
,
C.
Fontaine
,
V.
Diaz
, and
A.
Bernad
,
Sens. Actuators B
118
,
2
(
2006
).
5.
P. W.
Anderson
,
Phys. Rev.
109
,
1492
(
1958
).
6.
C.
Pierre
,
D. M.
Tang
, and
E. H.
Dowell
,
AIAA J.
25
,
1249
(
1987
).
7.
O. O.
Bendiksen
,
AIAA J.
25
,
1241
(
1987
).
8.
M.
Sato
,
B. E.
Hubbard
,
A. J.
Sievers
,
B.
Ilic
,
D. A.
Czaplewski
, and
H. G.
Craighead
,
Phys. Rev. Lett.
90
,
044102
(
2003
).
9.
E.
Buks
and
M. L.
Roukes
,
J. Microelectromech. Syst.
11
,
802
(
2002
).
10.
M.
Napoli
,
W. H.
Zhang
,
K.
Turner
, and
B.
Bamieh
,
J. Microelectromech. Syst.
14
,
295
(
2005
).
11.
L.
Nicu
and
C.
Bergaud
,
J. Micromech. Microeng.
14
,
727
(
2004
).
12.
M.
Spletzer
,
A.
Raman
,
A. Q.
Wu
,
X.
Xu
, and
R.
Reifenberger
,
Appl. Phys. Lett.
88
,
254102
(
2006
).
13.
A.
Qazi
,
D.
Nonis
,
A.
Pozzato
,
M.
Tormen
,
M.
Lazzarino
,
S.
Carrato
, and
G.
Scoles
,
Appl. Phys. Lett.
90
,
173118
(
2007
).
14.

The cantilevers are nominally 200μm long, 20μm wide, 2.25μm thick, are separated by a distance of 30μm, and are made of polysilicon (E=160GPa, ρ=2200kgm3). They are a component of the Cantilever Array Discovery Platform™ chip that is available to CINT Users (see cint. lanl. gov/useṟcall/discovery̱platform. shtml). The lumped parameter mass M and stiffness K of each individual cantilever, calculated using beam theory, was taken to be 4.75ng and 1.01Nm, respectively. The coupling stiffness KC was chosen to be 0.014K in order to match theoretical and experimental frequencies.

15.
E.
Doebelin
,
Engineering Experimentation: Planning, Execution, Reporting
(
McGraw-Hill
,
Boston
,
1995
).
16.
S.
Basak
and
A.
Raman
,
Phys. Fluids
19
,
017105
(
2007
).
17.
Duke Scientific Corp., Fremont, CA.
You do not currently have access to this content.