The site occupancy of Ca in the CaTiO3BaTiO3 solid solution has been investigated through an analysis of the lattice parameters and ferroelectric phase transition temperature variation. The lattice volume was found to vary in a nonlinear manner with different amounts of Ca2+ ions occupying the Ba and Ti sites near the pure BaTiO3 end member. To model the lattice volume trends in this complex case, we modify the classical Vegard’s law and incorporate a lattice volume correction to account for the ionic compensation of the acceptor charge CaTi, with oxygen vacancies VO. The paraelectric-ferroelectric phase transition temperature shows further evidence of a non-linear variation with composition. This is also consistent with site occupancy changes. From lattice volume and phase transition temperature variations on the Ba-site occupancy compositions, the maximum concentration of Ti-site occupancy (y) was determined and found to be approximately 0.007±0.002 and then found to remain constant for higher concentrations of Ca, specifically (0.03<x+y<0.1,Ba1xCax+yTi1yO3y).

1.
J. M.
Herbert
,
Trans. Br. Ceram. Soc.
62
,
645
(
1963
).
2.
I.
Burn
and
G. H.
Maher
,
J. Mater. Sci.
10
,
633
(
1975
).
3.
Y.
Sakabe
,
Am. Ceram. Soc. Bull.
66
,
1338
(
1987
).
4.
Y.
Nakano
,
A.
Sato
,
A.
Hitomi
, and
T.
Nomura
,
Ceram. Trans.
32
,
119
(
1993
).
5.
Y.
Sakabe
,
Y.
Hamaji
, and
T.
Nishiyama
,
Ferroelectrics
133
,
133
(
1992
).
6.
S.
Sato
,
Y.
Nakano
,
A.
Sato
, and
T.
Nomura
,
J. Eur. Ceram. Soc.
19
,
1061
(
1999
).
7.
H.
Saito
,
H.
Chazono
,
H.
Kishi
, and
N.
Yamaoka
,
Jpn. J. Appl. Phys., Part 1
30
,
2307
(
1991
).
8.
H.
Chazono
,
Trans. Mater. Res. Soc. Jpn.
29
,
1067
(
2004
).
9.
Y.
Okino
,
H.
Shizuno
,
S.
Kusumi
, and
H.
Kishi
,
Jpn. J. Appl. Phys., Part 1
33
,
5393
(
1994
).
10.
Y.
Tsur
,
A.
Hitomi
,
I.
Scrymgeour
, and
C. A.
Randall
,
Jpn. J. Appl. Phys., Part 1
40
,
255
(
2001
).
11.
J.
Jeong
and
Y. H.
Han
,
J. Electroceram.
13
,
549
(
2004
).
12.
S.
Sato
,
T.
Nomura
,
K.
Fukuda
, and
I.
Nakai
,
Trans. Mater. Res. Soc. Jpn.
29
,
1151
(
2004
).
13.
D.
Hennings
,
K.
Albertsen
,
P.
Hansen
, and
O.
Steigelmann
,
Ceram. Trans.
97
,
41
(
1999
).
14.
C. E.
Lee
,
S. H.
Kang
,
D. S.
Sinn
, and
H. I.
Yoo
,
J. Electroceram.
13
,
785
(
2004
).
15.
H. M.
Chan
,
M. P.
Harmer
,
M.
Lal
, and
D. M.
Smyth
,
Mater. Res. Soc. Symp. Proc.
31
,
345
(
1984
).
16.
Y. H.
Han
,
J. B.
Appleby
, and
D. M.
Smyth
,
J. Am. Ceram. Soc.
70
,
96
(
1987
).
17.
X. W.
Zhang
,
Y. H.
Han
,
M.
Lal
, and
D. M.
Smyth
,
J. Am. Ceram. Soc.
70
,
100
(
1987
).
18.
M.
McQuarrie
and
F. W.
Behnke
,
J. Am. Ceram. Soc.
37
,
539
(
1954
).
19.
T.
Mitsui
and
W. B.
Westphal
,
Phys. Rev.
124
,
1354
(
1961
).
20.
R. D.
Shannon
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
32
,
751
(
1976
).
21.
Z. Q.
Zhuang
,
M. P.
Harmer
, and
D. M.
Smyth
,
Mater. Res. Bull.
22
,
1329
(
1987
).
22.
B.
Jaffe
,
W. R.
Cook
, Jr.
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic
,
London
,
1971
).
23.
D. C.
Sinclair
and
J. P.
Attfield
,
Chem. Commun. (Cambridge)
16
,
1497
(
1999
).
24.
V. S.
Tiwari
,
D.
Pandey
,
P. S. R.
Krishna
,
R.
Chakravarthy
, and
B. A.
Dasannacharya
,
Physica B
174
,
112
(
1991
).
25.
P. P.
Phule
and
S. H.
Risbud
,
J. Mater. Sci.
25
,
1169
(
1990
).
26.
D. S.
Filimonov
,
Z.-K.
Liu
, and
C. A.
Randall
,
Mater. Res. Bull.
37
,
467
(
2002
).
27.
S.
Lee
,
Z.-K.
Liu
,
M. H.
Kim
, and
C. A.
Randall
,
J. Appl. Phys.
101
,
054119
(
2007
).
28.
S.
Lee
,
Z.-K.
Liu
, and
C. A.
Randall
,
J. Am. Ceram. Soc.
90
,
2589
(
2007
).
29.
B. D.
Cullity
and
S. R.
Stock
,
Elements of X-ray Diffraction
, 3rd ed. (
Prentice-Hall
,
New Jersey
,
2001
).
31.
R. M.
Hazen
and
L. W.
Finger
,
Comparative Crystal Chemistry
(
Wiley
,
New York
,
1982
).
32.
G. Y.
Yang
,
S. I.
Lee
,
Z. J.
Liu
,
C. J.
Anthony
,
E. C.
Dickey
,
Z. K.
Liu
, and
C. A.
Randall
,
Acta Mater.
54
,
3513
(
2006
).
33.
C. H.
Park
and
D. J.
Chadi
,
Phys. Rev. B
57
,
R13961
(
1998
).
34.
M. M.
Ahmed
,
K.
Yamada
,
P.
Meuffels
, and
R.
Waser
,
Appl. Phys. Lett.
90
,
112902
(
2007
).
35.
S.
Lee
,
Z.-K.
Liu
, and
C. A.
Randall
, “
Comprehensive linkage of defect and phase equilibria through ferroelectric transition behavior in BaTiO3-based dielectrics: part 1. defect energies under ambient air conditions
,”
J. Am. Ceram. Soc.
(in press).
You do not currently have access to this content.