We present a visible III-nitride gain medium based on type-II InGaN-GaNAs quantum well (QW), employing thin dilute-As (3%) GaNAs layer. The utilization of GaNAs layer shifts the hole confinement to the center of the type-II QW, which significantly reduces the charge separation effect. The optical gain and spontaneous recombination rate of the type-II InGaN-GaNAs QW are analyzed and compared with those of conventional InGaN QW emitting in the blue regime (λ450nm), using six-band k.p formalism for energy dispersion of the III-nitride wurtzite semiconductor. The use of type-II QW leads to significant improvement in the optical gain and spontaneous recombination rate.

1.
S.
Nakamura
,
M.
Senoh
,
N.
Iwasa
,
S.
Nagahama
,
T.
Yamada
, and
T.
Mukai
,
Jpn. J. Appl. Phys., Part 2
34
,
L1332
(
1995
).
2.
W.
Zhao
,
Y.
Li
,
T.
Detchprohm
, and
C.
Wetzel
,
Phys. Status Solidi C
4
,
9
(
2007
).
3.
R. M.
Farrell
,
D. F.
Feezell
,
M. C.
Schmidt
,
D. A.
Haeger
,
K. M.
Kelchner
,
K.
Iso
,
H.
Yamada
,
M.
Saito
,
K.
Fujito
,
D. A.
Cohen
,
J. S.
Speck
,
S. P.
DenBaars
, and
S.
Nakamura
,
Jpn. J. Appl. Phys., Part 2
46
,
L761
(
2007
).
4.
J.
Park
and
Y.
Kawakami
,
Appl. Phys. Lett.
88
,
202107
(
2006
).
5.
R. A.
Arif
,
Y. K.
Ee
, and
N.
Tansu
,
Appl. Phys. Lett.
91
,
091110
(
2007
).
6.
R. A.
Arif
,
Y. K.
Ee
, and
N.
Tansu
, “
Nanostructure engineering of staggered InGaN quantum wells light emitting diodes emitting at 420–510 nm
,”
Phys. Status Solidi A
(to be published).
7.
J. R.
Meyer
,
C. A.
Hoffman
,
F. J.
Bartoli
, and
L. R.
Ram-Mohan
,
Appl. Phys. Lett.
67
,
757
(
1995
).
8.
I.
Vurgaftman
,
C. L.
Felix
,
W. W.
Bewley
,
D. W.
Stokes
,
R. E.
Bartolo
, and
J. R.
Meyer
,
Philos. Trans. R. Soc. London, Ser. A
359
,
489
(
2001
).
9.
N.
Tansu
and
L. J.
Mawst
,
IEEE J. Quantum Electron.
39
,
1205
(
2003
).
10.
I.
Vurgaftman
,
J. R.
Meyer
,
N.
Tansu
, and
L. J.
Mawst
,
Appl. Phys. Lett.
83
,
2742
(
2003
).
11.
A.
Kimura
,
C. A.
Paulson
,
H. F.
Tang
, and
T. F.
Kuech
,
Appl. Phys. Lett.
84
,
1489
(
2004
).
12.
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
J. D.
Denlinger
,
W.
Shan
,
J. W.
Ager
 III
,
A.
Kimura
,
H. F.
Tang
, and
T. F.
Kuech
,
Phys. Rev. B
70
,
115214
(
2004
).
13.
S. L.
Chuang
and
C. S.
Chang
,
Phys. Rev. B
54
,
2491
(
1996
).
14.
S. L.
Chuang
,
IEEE J. Quantum Electron.
32
,
1791
(
1996
).
15.
I.
Vurgaftman
and
J. R.
Meyer
,
J. Appl. Phys.
94
,
3675
(
2003
).
16.
J.
Piprek
,
Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation
(
Academic
,
London
,
2003
), p.
34
.
17.
J.
Wu
,
W.
Walukiewicz
,
W.
Shan
,
K. M.
Yu
,
J. W.
Ager
 III
,
S. X.
Li
,
E. E.
Haller
,
H.
Lu
, and
W. J.
Schaff
,
J. Appl. Phys.
94
,
4457
(
2003
).
18.
J.
Piprek
and
S.
Nakamura
,
IEE Proc.-J: Optoelectron.
149
,
145
(
2002
).
19.
Y. C.
Yeo
,
T. C.
Chong
,
M. F.
Li
, and
W. J.
Fan
,
J. Appl. Phys.
84
,
1813
(
1998
).
20.
J.
Hader
,
J. V.
Moloney
,
A.
Thranhardt
, and
S. W.
Koch
,
Nitride Semiconductor Devices
, edited by
J.
Piprek
(
Wiley-VCH
,
Weinheim, Germany
,
2007
), Chap. 7, p.
164
.
21.
W. W.
Chow
and
M.
Kneissl
,
J. Appl. Phys.
98
,
114502
(
2005
).
22.
P.
Mackowiak
and
W.
Nakwaski
,
MRS Internet J. Nitride Semicond. Res.
3
,
35
(
1998
).
23.
Y. C.
Shen
,
G. O.
Mueller
,
S.
Watanabe
,
N. F.
Gardner
,
A.
Munkholm
, and
M. R.
Krames
,
Appl. Phys. Lett.
91
,
141101
(
2007
).
You do not currently have access to this content.