The “rich-club phenomenon” in complex networks is characterized when nodes of higher degree are more interconnected than nodes with lower degree. The presence of this phenomenon may indicate several interesting high-level network properties, such as tolerance to hub failures. Here, the authors investigate the existence of this phenomenon across the hierarchies of several real-world networks. Their simulations reveal that the presence or absence of this phenomenon in a network does not imply its presence or absence in the network’s successive hierarchies, and that this behavior is even nonmonotonic in some cases.

1.
S.
Zhou
and
R. J.
Mondragon
,
IEEE Commun. Lett.
8
,
180
(
2004
).
2.
V.
Colizza
,
A.
Flammini
,
M. A.
Serrano
, and
A.
Vespignani
,
Nat. Phys.
2
,
110
(
2006
).
3.
M.
Faloutsos
,
P.
Faloutsos
, and
C.
Faloutsos
,
Proceedings of ACM SIGCOMM
,
1999
(unpublished).
4.
R.
Cohen
,
S.
Havlin
,
S.
Mokryn
,
D.
Dolev
,
T.
Kalisky
, and
Y.
Shavitt
, e-print arXiv:cond-mat/0305582.
5.
L.
da F. Costa
,
Phys. Rev. Lett.
93
,
098702
(
2004
);
[PubMed]
6.
L.
da F. Costa
and
L. H. C.
da Silva
,
Eur. Phys. J. B
50
,
237
(
2006
);
7.
R. F.
Andrade
,
J. G.
Miranda
, and
T.
Petit Lobão
,
Phys. Rev. E
73
,
046101
(
2006
).
8.
L.
da F. Costa
and
F. N.
Silva
,
J. Stat. Phys.
(in press);
9.
R.
Milo
,
N.
Kashtan
,
S.
Itzkovitz
,
M. E. J.
Newman
, and
U.
Alon
, e-print arXiv:cond-mat/0312028.
10.
D. J.
Watts
and
S. H.
Strogatz
,
Nature (London)
393
,
440
(
1998
).
11.
H.
Jeong
,
S. P.
Mason
,
A. L.
Barabási
, and
Z. N.
Oltvai
,
Nature (London)
411
,
41
(
2001
).
12.
D. J.
Watts
and
S. H.
Strogatz
(http://cdg.columbia.edu/cdg/datasets).
13.
V.
Colizza
,
A.
Flammini
,
M. A.
Serrano
, and
A.
Vespignani
(http://cxnets.googlepages.com/research2).
14.
H.
Jeong
,
S. P.
Mason
,
A. L.
Barabási
, and
Z. N.
Oltvai
(http://www.nd.edu/networks/resources.htm).
You do not currently have access to this content.