The authors report the first direct detection of x-ray induced photocurrents in thick films (up to 20μm) of conjugated polymers. Schottky-based “sandwich” structures were fabricated from layers of either poly[1-methoxy-4-(2-ethylhexyloxy)-phenylenevinylene] (MEH-PPV) or poly(9,9-dioctylfluorene) (PFO) on indium tin oxide substrates using a top contact of aluminum. Good rectification was achieved from the Al-polymer contact, with a reverse bias leakage current density as low as 4nAcm2 at an electric field strength of 25kVcm. Irradiation with x-rays from a 50kV x-ray tube produced a linear increase in photocurrent over a dose rate range from 4to18mGys. The observed x-ray sensitivities of 240nCmGycm3 for MEH-PPV and 480nCmGycm3 for PFO structures are comparable to that reported for Si devices. A response time of <150ms to pulsed x-ray irradiation was measured with no evidence of long-lived current transients. Conjugated polymers offer the advantage of easy coatability over large areas and on curved surfaces. Their low average atomic number provides tissue-equivalent dosimetric response, with many potential applications including medical x-ray and synchrotron photon detection.

1.
N.
Tessler
,
N. T.
Harrison
, and
R. H.
Friend
,
Adv. Mater. (Weinheim, Ger.)
10
,
64
(
1998
).
2.
F.
Garnier
,
Electronic Materials
(
Wiley-VCH
Weinheim
,
1998
), p.
559
.
3.
K. M.
Coakley
and
M. D.
Mc Gehee
,
Chem. Mater.
16
,
4533
(
2004
).
4.
A.
Pron
and
P.
Rannou
,
Prog. Polym. Sci.
27
,
135
(
2002
).
5.
F. A.
Boroumand
,
P. W.
Fry
, and
D. G.
Lidzey
,
Nano Lett.
5
,
67
(
2005
).
6.
H.
Sirringhause
,
N.
Tessler
, and
R. H.
Friend
,
Science
280
,
1741
(
1998
).
7.
D.
Natali
and
M.
Sampietro
,
Nucl. Instrum. Methods Phys. Res. A
512
,
419
(
2003
).
8.
J. F.
Fowler
,
Proc. R. Soc. London, Ser. A
236
,
464
(
1956
).
9.
P.
Beckerle
and
H.
Strobele
,
Nucl. Instrum. Methods Phys. Res. A
449
,
302
(
2000
).
10.
M.
Bruzzi
,
F.
Nava
,
S.
Pini
, and
S.
Russo
,
Appl. Surf. Sci.
184
,
425
(
2001
).
11.
A. R.
Inigo
,
H.
Chiu
,
W.
Fann
,
Y.
Huang
,
U. S.
Jeng
,
C. H.
Hsu
,
K.
Peng
, and
S.
Chen
,
Synth. Met.
139
,
581
(
2003
).
12.
F.
Feller
,
D.
Geschke
, and
A. P.
Monkman
,
J. Appl. Phys.
93
,
2884
(
2003
).
13.
C. J.
Neef
and
J. P.
Ferraris
,
Macromolecules
33
,
2311
(
2000
).
14.
J. J.
Gutierrez
,
N.
Luong
,
D.
Zepeda
, and
J. P.
Ferraris
,
Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.)
45
,
172
(
2004
).
15.
A. W.
Grice
,
D. D. C.
Bradley
,
M. T.
Bernius
,
M.
Inbasekaran
,
W. W.
Wu
, and
E. P.
Woo
,
Appl. Phys. Lett.
73
,
629
(
1998
).
16.
I. D.
Parker
,
J. Appl. Phys.
75
,
1656
(
1994
).
17.
S.
Karg
,
M.
Meier
, and
W.
Reiss
,
J. Appl. Phys.
82
,
1951
(
1997
).
18.
P. S.
Davids
,
I. H.
Campbell
, and
D. L.
Smith
,
J. Appl. Phys.
82
,
6319
(
1997
).
19.
I. H.
Campbell
,
D. L.
Smith
,
C. J.
Neef
, and
J. P.
Ferraris
,
Appl. Phys. Lett.
74
,
2809
(
1999
).
20.
M.
Redecker
,
D. D. C.
Bradley
,
M.
Inbasekaran
, and
E. P.
Woo
,
Appl. Phys. Lett.
73
,
1565
(
1998
).
You do not currently have access to this content.