Understanding the magnitude of coercive fields, the external electric field that results in zero net polarization, has been a long-standing problem for ferroelectrics. The authors studied the switching and coercive fields using a combination of the continuum phase field approach, microelasticity, and electrostatics. While the values of coercive fields predicted from the phenomenological thermodynamic theory assuming a single ferroelectric domain or the theory of nucleation are at least one order of magnitude too high compared to those measured experimentally, the predictions incorporating structural inhomogeneities show remarkably good agreement with experimental measurements, revealing the critical role of multidomain/variants in polarization switching.

1.
H. F.
Kay
and
J. W.
Dunn
,
Philos. Mag.
7
,
2027
(
1962
).
2.
R.
Landauer
,
J. Appl. Phys.
28
,
227
(
1957
).
3.
A. M.
Bratkovsky
and
A. P.
Levanyuk
,
Phys. Rev. Lett.
85
,
4614
(
2000
).
4.
J. F.
Scott
,
J. Phys.: Condens. Matter
18
,
R361
(
2006
).
5.
G.
Gerra
,
A. K.
Tagantsev
, and
N.
Setter
,
Phys. Rev. Lett.
94
,
107602
(
2005
).
6.
A.
Roelofs
,
N. A.
Pertsev
,
R.
Waser
,
F.
Schlaphof
,
L. M.
Eng
,
C.
Ganpule
,
V.
Nagarajan
, and
R.
Ramesh
,
Appl. Phys. Lett.
80
,
1424
(
2002
).
7.
C. S.
Ganpule
,
A. L.
Roytburd
,
V.
Nagarajan
,
B. K.
Hill
,
S. B.
Ogale
,
E. D.
Williams
,
R.
Ramesh
, and
J. F.
Scott
,
Phys. Rev. B
65
,
014101
(
2002
).
8.
S.
Kim
,
V.
Gopalan
,
K.
Kitamura
, and
Y.
Furukawa
,
J. Appl. Phys.
90
,
2949
(
2001
).
9.
S.
Ducharme
,
V. M.
Fridkin
,
A. V.
Bune
,
S. P.
Palto
,
L. M.
Blinov
,
N. N.
Petukhova
, and
S. G.
Yudin
,
Phys. Rev. Lett.
84
,
175
(
2000
).
10.
M. E.
Drougard
,
R.
Landauer
, and
D. R.
Young
,
Phys. Rev.
98
,
1010
(
1955
).
11.
M. I.
Molotskii
and
M. M.
Shvebelman
,
Philos. Mag.
85
,
1637
(
2005
).
12.
L. B.
Kong
and
J.
Ma
,
Mater. Lett.
51
,
95
(
2001
).
13.
L. B.
Kong
,
J.
Ma
,
R. F.
Zhang
,
W.
Zhu
, and
O. K.
Tan
,
Mater. Lett.
55
,
370
(
2002
).
14.
A. Y.
Wu
,
P. M.
Vilarinho
,
I. M. M.
Salvado
, and
J. L.
Baptista
,
J. Am. Ceram. Soc.
83
,
1379
(
2000
).
15.
S.
Choudhury
,
Y. L.
Li
, and
L. Q.
Chen
,
J. Am. Ceram. Soc.
88
,
1669
(
2005
).
16.
Y. L.
Li
,
S. Y.
Hu
,
Z. K.
Liu
, and
L. Q.
Chen
,
Acta Mater.
50
,
395
(
2002
).
17.
S.
Choudhury
,
Y. L.
Li
,
C. E.
Krill
, and
L. Q.
Chen
,
Acta Mater.
53
,
5313
(
2005
).
18.
M. J.
Haun
,
E.
Furman
,
S. J.
Jang
, and
L. E.
Cross
,
Ferroelectrics
99
,
13
(
1989
).
19.
L. Q.
Chen
and
J.
Shen
,
Comput. Phys. Commun.
108
,
147
(
1998
).
20.
J. Y.
Li
,
R. C.
Rogan
,
E.
Ustundag
, and
K.
Bhattacharya
,
Nat. Mater.
4
,
776
(
2005
).
21.
M. J.
Hoffmann
,
M.
Hammer
,
A.
Endriss
, and
D. C.
Lupascu
,
Acta Mater.
49
,
1301
(
2001
).
22.
J.
Tartaj
,
C.
Moure
,
L.
Lascano
, and
P.
Duran
,
Mater. Res. Bull.
36
,
2301
(
2001
).
23.
Numerical Data and Fundamental Relationships in Science and Technology
(
Springer
,
Berlin
,
1981
), Vol.
16
III, p.
430
.
24.
Y. U.
Wang
,
Y. M. M.
Jin
, and
A. G.
Khachaturyan
,
J. Appl. Phys.
92
,
1351
(
2002
).
You do not currently have access to this content.