The conduction-band offset between GaN and InN is experimentally determined. InNn-type GaN isotype heterojunctions grown by molecular beam epitaxy are observed to exhibit Schottky-junction like behavior based on rectifying vertical current flow. From capacitance-voltage measurements on the heterojunction, the Schottky barrier height is found to be 0.94eV. The photocurrent spectroscopy measurement by backside illumination reveals an energy barrier height of 0.95eV across the heterojunction, consistent with the capacitance measurement. By combining electrical transport, capacitance-voltage, and photocurrent spectroscopy measurement results, the conduction band offset between InN and GaN is estimated to be ΔEC=1.68±0.1eV.

1.
V. Y.
Davydov
,
A. A.
Klochikhin
,
R. P.
Seisyan
,
V. V.
Emtsev
,
S. V.
Ivanov
,
F.
Bechstedt
,
J.
Furthmuller
,
H.
Harima
,
A. V.
Mudryi
,
J.
Aderhold
,
O.
Semchinova
, and
J.
Graul
,
Phys. Status Solidi B
234
,
796
(
2002
).
2.
C. G.
Van de Walle
and
J.
Neugebauer
,
Nature (London)
423
,
626
(
2003
).
3.
C.-F.
Shih
,
N.-C.
Chen
,
P.-H.
Chang
, and
K.-S.
Liu
,
Jpn. J. Appl. Phys., Part 1
44
,
7892
(
2005
).
4.
T.
Ohashi
,
P.
Holmstrom
,
A.
Kikuchi
, and
K.
Kishino
,
Appl. Phys. Lett.
89
,
041907
(
2006
).
5.
C.-L.
Wu
,
H.-M.
Lee
,
C.-T.
Kuo
,
S.
Gwo
, and
C.-H.
Hsu
,
Appl. Phys. Lett.
91
,
042112
(
2007
).
6.
N. C.
Chen
,
P. H.
Chang
,
Y. N.
Wang
,
H. C.
Peng
,
W. C.
Lien
,
C. F.
Shih
,
C.-A.
Chang
, and
G. M.
Wu
,
Appl. Phys. Lett.
87
,
212111
(
2007
).
7.
K. A.
Wang
,
Y.
Cao
,
J.
Simon
,
J.
Zhang
,
A.
Mintairov
,
J.
Merz
,
D.
Hall
,
T.
Kosel
, and
D.
Jena
,
Appl. Phys. Lett.
89
,
162110
(
2006
).
8.
D. K.
Schroder
,
Semiconductor Materials and Device Characterization
, 3rd ed. (
Wiley-Interscience
,
NJ
,
2005
), p.
161
.
9.
A.
Nakagawa
,
H.
Kroemer
, and
J. H.
English
,
Appl. Phys. Lett.
54
,
1893
(
1989
).
10.
S. R.
Forrest
,
Heterojunction Band Discontinuities: Physics and Device Applications
, 1st ed., edited by
F.
Capasso
and
G.
Margaritondo
(
Elsevier
,
North-Holland, Amsterdam
,
1989
), Chap. 8, pp.
312
375
.
11.
R. H.
Fowler
,
Phys. Rev.
38
,
45
(
1931
).
12.
H.
Kromer
,
Quantum Mechanics: For Engineering, Materials Science, and Applied Physics
, 1st ed. (
Prentice-Hall
,
Upper Saddle River, NJ
,
1994
), p.
447
.
13.
D.
Fritsch
,
H.
Schmidt
, and
M.
Grundmann
,
Phys. Rev. B
69
,
165204
(
2004
).
14.
F. F.
Fang
and
W. E.
Howard
,
Phys. Rev. Lett.
16
,
797
(
1966
).
15.
B. K.
Ridley
,
B. E.
Foutz
, and
L. F.
Eastman
,
Phys. Rev. B
61
,
16862
(
2000
).
16.
V.
Lebedev
,
V.
Cimalla
,
T.
Baumann
,
O.
Ambacher
,
F. M.
Morales
,
J. G.
Lozano
, and
D.
Gonzalez
,
J. Appl. Phys.
100
,
094903
(
2006
).
17.
L. F. J.
Piper
,
T. D.
Veal
,
C. F.
McConville
,
H.
Lu
, and
W. J.
Schaff
,
Appl. Phys. Lett.
88
,
252109
(
2006
).
18.
G.
Martin
,
A.
Botchkarev
,
A.
Rockett
, and H. Morkoç,
Appl. Phys. Lett.
68
,
2541
(
1996
).
You do not currently have access to this content.