We present an ab initio theoretical approach to accurately describe phonon thermal transport in semiconductors and insulators free of adjustable parameters. This technique combines a Boltzmann formalism with density functional calculations of harmonic and anharmonic interatomic force constants. Without any fitting parameters, we obtain excellent agreement (<5% difference at room temperature) between the calculated and measured intrinsic lattice thermal conductivities of silicon and germanium. As such, this method may provide predictive theoretical guidance to experimental thermal transport studies of bulk and nanomaterials as well as facilitating the design of new materials.

1.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
2.
G. D.
Mahan
,
B.
Sales
, and
J.
Sharp
,
Phys. Today
50
,
42
(
1997
);
3.
R.
Peierls
,
Ann. Phys.
3
,
1055
(
1929
).
4.
R.
Peierls
,
Quantum Theory of Solids
(
Clarendon
,
Oxford
,
1955
), p.
40
;
J. M.
Ziman
,
Electrons and Phonons
(
Oxford University Press
,
London
,
1960
), p.
298
.
5.
M.
Asen-Palmer
,
K.
Bartkowski
,
E.
Gmelin
,
M.
Cardona
,
A. P.
Zhernov
,
A. V.
Inyushkin
,
A.
Taldenkov
,
V. I.
Ozhogin
,
K. M.
Itoh
, and
E. E.
Haller
,
Phys. Rev. B
56
,
9431
(
1997
).
6.
See, for example,
J. X.
Cao
,
X. H.
Yan
,
Y.
Xiao
, and
J. W.
Ding
,
Phys. Rev. B
69
,
073407
(
2004
);
A.
Khitun
and
K. L.
Wang
,
Appl. Phys. Lett.
79
,
851
(
2001
).
7.
S. G.
Volz
and
G.
Chen
,
Phys. Rev. B
61
,
2651
(
2000
);
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Phys. Rev. B
65
,
144306
(
2002
).
8.
L.
Sun
and
J. Y.
Murthy
,
Appl. Phys. Lett.
89
,
171919
(
2006
).
9.
M.
Omini
and
A.
Sparavigna
,
Phys. Rev. B
53
,
9064
(
1996
);
M.
Omini
and
A.
Sparavigna
,
Nuovo Cimento D
19
,
1537
(
1997
).
10.
D. A.
Broido
,
A.
Ward
, and
N.
Mingo
,
Phys. Rev. B
72
,
014308
(
2005
).
11.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
12.
G.
Deinzer
,
G.
Birner
, and
D.
Strauch
,
Phys. Rev. B
67
,
144304
(
2003
).
13.
A. V.
Inyushkin
,
A. N.
Taldenkov
,
A. M.
Cibin
,
A. V.
Gusev
, and
H.-J.
Pohl
,
Phys. Status Solidi C
1
,
2995
(
2004
);
R. K.
Kremer
,
K.
Graf
,
M.
Cardona
,
G. G.
Devyatykh
,
A. V.
Gusev
,
A. M.
Gibin
,
A. V.
Inysushkin
,
A. N.
Taldenkov
, and
H.-J.
Pohl
,
Solid State Commun.
131
,
499
(
2004
).
14.
V. I.
Ozhogin
,
A. V.
Inyushkin
,
A. N.
Taldenkov
,
A. V.
Tikhomirov
, and
G. E.
Popov
,
JETP Lett.
63
,
490
(
1996
).
15.
A simple model comparison of three and four-phonon scattering rates shows the latter to be considerably weaker than the former even at high temperatures.
See
D. J.
Ecsedy
and
P. G.
Klemens
,
Phys. Rev. B
15
,
5957
(
1977
).
16.
P. G.
Klemens
,
Proc. R. Soc. London, Ser. A
A208
,
108
(
1951
).
17.
F.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
);
J. F.
Justo
,
M. Z.
Bazant
,
E.
Kaxiras
,
V. V.
Bulatov
, and
S.
Yip
,
Phys. Rev. B
58
,
2539
(
1998
).
18.
A.
Debernardi
,
S.
Baroni
, and
E.
Molinari
,
Phys. Rev. Lett.
75
,
1819
(
1995
);
G.
Lang
,
K.
Karch
,
M.
Schmitt
,
P.
Pavone
,
A. P.
Mayer
,
R. K.
Wehner
, and
D.
Strauch
,
Phys. Rev. B
59
,
6182
(
1999
).
19.
X.
Gonze
and
J.-P.
Vigneron
,
Phys. Rev. B
39
,
13120
(
1989
).
20.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
21.
U.
von Barth
and
R.
Car
, (unpublished);
for a brief description of this method, see
A.
Dal Corso
,
S.
Baroni
,
R.
Resta
and
S.
de Gironcoli
,
Phys. Rev. B
47
,
3588
(
1993
).
22.

Calculation of the phase space of energy and momentum-conserving three-phonon processes provides both time and memory bottlenecks. The size of the phase space search increases dramatically with the number phonon branches 3m, where m is the number of atoms in the unit cell.

You do not currently have access to this content.