A simple yet highly reproducible method to suppress contamination of graphene at low temperature inside the cryostat is presented. The method consists of applying a current of several milliamperes through the graphene device, which is here typically a few microns wide. This ultrahigh current density is shown to remove contamination adsorbed on the surface. This method is well suited for quantum electron transport studies of undoped graphene devices, and its utility is demonstrated here by measuring the anomalous quantum Hall effect.

1.
For a review, see:
A.
Castro Neto
,
F.
Guinea
, and
N. M.
Peres
, “
Drawing conclusions from graphene
,”
Phys. World
,
November (
2006
).
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
);
[PubMed]
M. I.
Katsnelson
,
Mater. Today
10
,
20
(
2007
).
2.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature (London)
438
,
197
(
2005
).
3.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature (London)
438
,
201
(
2005
).
4.
V. P.
Gusynin
and
S. G.
Sharapov
,
Phys. Rev. Lett.
95
,
146801
(
2005
).
5.
N. M. R.
Peres
,
F.
Guinea
, and
A. H.
Castro Neto
,
Phys. Rev. B
73
,
125411
(
2006
).
6.
C.
Berger
,
Z.
Song
,
X.
Li
,
X.
Wu
,
N.
Brown
,
C.
Naud
,
D.
Mayou
,
T.
Li
,
J.
Hass
,
A. N.
Marchenkov
,
E. H.
Conrad
,
P. N.
First
, and
W. A.
de Heer
,
Science
312
,
1191
(
2006
).
7.
F.
Schedin
,
A. K.
Geim
,
S. V.
Morozov
,
E. H.
Hill
,
P.
Blake
,
M. I.
Katsnelson
, and
K. S.
Novoselov
,
Nat. Mater.
6
,
652
(
2007
).
8.
E. H.
Hwang
,
S.
Adam
,
S.
Das Sarma
, and
A. K.
Geim
, e-print arXiv:cond-mat/0610834v1.
9.
M.
Ishigami
,
J. H.
Chen
,
W. G.
Cullen
,
M. S.
Fuhrer
, and
E. D.
Williams
,
Nano Lett.
7
,
1643
(
2007
).
10.
E.
Stolyarova
,
K. T.
Rim
,
S.
Ryu
,
J.
Maultzsch
,
P.
Kim
,
L. E.
Brus
,
T. F.
Heinz
,
M. S.
Hybertsen
, and
G. W.
Flynn
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
9209
(
2007
).
11.
Z.
Yao
,
C. L.
Kane
, and
C.
Dekker
,
Phys. Rev. Lett.
84
,
2941
(
2000
).
12.
B.
Bourlon
,
D. C.
Glattli
,
B.
Plaçais
,
J. M.
Berroir
,
C.
Miko
,
L.
Forró
, and
A.
Bachtold
,
Phys. Rev. Lett.
92
,
026804
(
2004
).
13.
R. E.
Hummel
,
Int. Mater. Rev.
39
,
97
(
1994
).
14.
H.
Park
,
A. K. L.
Lim
,
J.
Park
,
A. P.
Alivisatos
, and
P. L.
McEuen
,
Appl. Phys. Lett.
75
,
301
(
1999
).
15.
B. C.
Regan
,
S.
Aloni
,
R. O.
Ritchie
,
U.
Dahmen
, and
A.
Zettl
,
Nature (London)
428
,
924
(
2004
).
16.
The melting temperature Tm of 4nm diameter CdS particles has been measured to be 1180K [
A. N.
Goldstein
,
C. M.
Echer
, and
A. P.
Alivisatos
,
Science
256
,
1425
(
1992
)].
[PubMed]
Tm of CdSe particles can be roughly estimated using TmTmbulk=1Cd, where d is the particle diameter and Tmbulk is the bulk material melting temperature (1510K for CdSe and 2020K for CdS) [
Z.
Zhang
,
M.
Zhao
, and
Q.
Jiang
,
Semicond. Sci. Technol.
16
,
L33
(
2001
)]. C is material dependent; yet, here, we take the same value for CdSe and CdS.
17.
H. B.
Heersche
,
P.
Jarillo-Herrero
,
J. B.
Oostinga
,
L. M. K.
Vandersypen
, and
A. F.
Morpurgo
,
Nature (London)
446
,
56
(
2007
).
You do not currently have access to this content.