The method of surface preparation on n-type GaAs, even with the presence of an amorphous-Si interfacial passivation layer, is shown to be a critical step in the removal of accumulation capacitance frequency dispersion. In situ deposition and analysis techniques were used to study different surface preparations, including NH4OH, Si-flux, and atomic hydrogen exposures, as well as Si passivation depositions prior to in situ atomic layer deposition of Al2O3. As–O bonding was removed and a bond conversion process with Si deposition is observed. The accumulation capacitance frequency dispersion was removed only when a Si interlayer and a specific surface clean were combined.

1.
M. J.
Hale
,
S. I.
Yi
,
J. Z.
Sexton
,
A. C.
Kummel
, and
M.
Passlack
,
J. Chem. Phys.
119
,
6719
(
2003
).
2.
H.
Hasegawa
,
M.
Akazawa
,
H.
Ishii
, and
K.
Matsuzaki
,
J. Vac. Sci. Technol. B
7
,
870
(
1989
).
3.
J. L.
Freeouf
,
D. A.
Buchanan
,
S. L.
Wright
,
T. N.
Jackson
, and
B.
Robinson
,
Appl. Phys. Lett.
57
,
1919
(
1990
).
4.
S.
Oktyabrsky
,
V.
Tokranov
,
M.
Yakimov
,
R.
Moore
,
S.
Koveshnikov
,
W.
Tsai
,
F.
Zhu
, and
J. C.
Lee
,
Mater. Sci. Eng., B
135
,
272
(
2006
).
5.
S. J.
Koester
,
E. W.
Kiewra
,
Y.
Sun
,
D. A.
Neumayer
,
J. A.
Ott
,
M.
Copel
,
D. K.
Sadana
,
D. J.
Webb
,
J.
Fompeyrine
,
J. P.
Locquet
,
C.
Marchiori
,
M.
Sousa
, and
R.
Germann
,
Appl. Phys. Lett.
89
,
042104
(
2006
).
6.
X.
Yuan
,
H.-C.
Lin
, and
P.
Ye
,
IEEE Trans. Electron Devices
54
,
1811
(
2007
).
7.
T.
Akatsu
,
A.
Plossl
,
H.
Stenzel
, and
U.
Gosele
,
J. Appl. Phys.
86
,
7146
(
1999
).
8.
M.
Yamada
,
Y.
Ide
, and
K.
Tone
,
Appl. Surf. Sci.
70-1
,
531
(
1993
).
9.
P.
Sivasubramani
,
J.
Kim
,
M. J.
Kim
,
B. E.
Gnade
, and
R. M.
Wallace
,
J. Appl. Phys.
101
,
114108
(
2007
).
10.
N.
Braslau
,
J. Vac. Sci. Technol.
19
,
803
(
1981
).
11.
G.
Landgren
,
R.
Ludeke
,
Y.
Jugnet
,
J. F.
Morar
, and
F. J.
Himpsel
,
J. Vac. Sci. Technol. B
2
,
351
(
1984
).
12.
M. V.
Lebedev
,
D.
Ensling
,
R.
Hunger
,
T.
Mayer
, and
W.
Jaegermann
,
Appl. Surf. Sci.
229
,
226
(
2004
).
13.
C. Y.
Su
,
I.
Lindau
,
P. R.
Keath
,
P. W.
Chye
, and
W. E.
Spicer
,
J. Vac. Sci. Technol.
17
,
936
(
1980
).
14.
P.
Kruse
,
J. G.
McLean
, and
A. C.
Kummel
,
J. Chem. Phys.
113
,
9217
(
2000
).
15.
G. D.
Wilk
,
Y.
Wei
,
H.
Edwards
, and
R. M.
Wallace
,
Appl. Phys. Lett.
70
,
2288
(
1997
).
16.
D. L.
Winn
,
M. J.
Hale
,
T. J.
Grassman
,
A. C.
Kummel
,
R.
Droopad
, and
M.
Passlack
,
J. Chem. Phys.
126
,
084703
(
2007
).
17.
M. M.
Frank
,
G. D.
Wilk
,
D.
Starodub
,
T.
Gustafsson
,
E.
Garfunkel
,
Y. J.
Chabal
,
J.
Grazul
, and
D. A.
Muller
,
Appl. Phys. Lett.
86
,
152904
(
2005
).
18.
M. L.
Huang
,
Y. C.
Chang
,
C. H.
Chang
,
Y. J.
Lee
,
P.
Chang
,
J.
Kwo
,
T. B.
Wu
, and
M.
Hong
,
Appl. Phys. Lett.
87
,
252104
(
2005
).
19.
E. H.
Nicollian
and
J. R.
Brews
,
MOS Physics and Technology
,
Wiley
,
Hoboken, NJ
, (
1982
).
20.
H.
Hasegawa
and
T.
Sawada
,
IEEE Trans. Electron Devices
27
,
1055
(
1980
).
You do not currently have access to this content.