The authors show that the ordered three-dimensional arrays of quantum dots, i.e., quantum dot supracrystals, can be used to implement the intermediate-band solar cell with the efficiency exceeding the Shockley-Queisser limit for a single junction cell. The strong electron wave function overlap resulting in minibands formation allows one to tune the band structure and enhance the light absorption and carrier transport. A first-principles semianalytical approach was used to determine the optimum dimensions of the quantum dots and the interdot spacing to achieve a maximum efficiency in the InAs0.9N0.1GaAs0.98Sb0.02 quantum dot supracrystal photovoltaic cells.

1.
T.
Tiedje
,
E.
Yablonovitch
,
G. D.
Cody
, and
B. G.
Brooks
,
IEEE Trans. Electron Devices
ED-31
,
711
(
1984
).
2.
P. T.
Landsberg
and
G.
Tonge
,
J. Appl. Phys.
51
,
R1
(
1980
).
3.
A.
Luque
and
A.
Marti
,
Phys. Rev. Lett.
78
,
5014
(
1997
).
4.
M. A.
Green
, in
Handbook of Semiconductor Nanostructures and Nanodevices
,
Photovoltaic Applications of Nanostructures
Vol.
4
, edited by
A. A.
Balandin
and
K. L.
Wang
(
ASP Stevens Ranch
,
California
,
2006
), pp.
219
237
.
5.
M. A.
Green
,
Nanotechnology
11
,
401
(
2000
).
6.
A.
Marti
,
N.
Lopez
,
E.
Antolin
,
E.
Canovas
,
C.
Stanley
,
C.
Farmer
,
L.
Cuadra
, and
A.
Luque
,
Thin Solid Films
511/512
,
638
(
2006
).
7.
S.
Sinharoy
,
C. W.
King
,
S. G.
Bailey
, and
R. P.
Raffaelle
,
Proceedings of the 31st IEEE Photovoltaic Specialists Conference
(
IEEE
,
New Jersey
,
2005
), pp.
94
97
.
8.
L.
Cuadra
,
A.
Marti
, and
A.
Luque
,
Thin Solid Films
451/452
,
593
(
2004
).
10.
A. S.
Brown
,
M. A.
Green
, and
R. P.
Corkish
,
Physica E (Amsterdam)
14
,
121
(
2002
).
11.
O. L.
Lazarenkova
and
A. A.
Balandin
,
J. Appl. Phys.
89
,
5509
(
2001
).
12.
G.
Springholz
,
V.
Holy
,
M.
Pinczolits
, and
G.
Bauer
,
Science
282
,
734
(
1998
).
13.
Y. I.
Mazur
,
W. Q.
Ma
,
X.
Wang
,
Z. M.
Wang
,
G. J.
Salamo
,
M.
Xiao
,
T. D.
Mishima
, and
M. B.
Johnson
,
Appl. Phys. Lett.
83
,
987
(
2003
).
14.
S.
Kiravittaya
,
M.
Benyoucef
,
R.
Zapf-Gottwick
,
A.
Rastelli
, and
O. G.
Schmidt
,
Appl. Phys. Lett.
89
,
233102
(
2006
).
15.
J. S.
Kim
,
M.
Kawabe
, and
N.
Koguchi
,
Appl. Phys. Lett.
88
,
072107
(
2006
).
16.
A. A.
Balandin
,
K. L.
Wang
,
N.
Kouklin
, and
S.
Bandyopadhyay
,
Appl. Phys. Lett.
76
,
137
(
2000
).
17.
A. A.
Balandin
,
G.
Jin
, and
K. L.
Wang
,
J. Electron. Mater.
20
,
549
(
2000
).
18.
J. L.
Liu
,
W. G.
Wu
,
A. A.
Balandin
,
G. L.
Jin
,
Y. H.
Luo
,
S. G.
Thomas
,
Y.
Lu
, and
K. L.
Wang
,
Appl. Phys. Lett.
75
,
1745
(
1999
).
19.
O. L.
Lazarenkova
and
A. A.
Balandin
,
Phys. Rev. B
66
,
245319
(
2002
).
20.
D. L.
Nika
,
E. P.
Pokatilov
,
Q.
Shao
,
A. A.
Balandin
,
Phys. Rev. B
76
,
125417
(
2007
).
21.
M. Y.
Levy
,
C.
Honsberg
,
A.
Marti
, and
A.
Luque
,
Proceedings of the 31st IEEE Photovoltaic Specialists Conference
(
IEEE
,
New Jersey
,
2005
), pp.
90
93
.
22.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
23.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
24.
L. D.
Landau
and
E. M.
Lifchitz
,
Physique Statistique
(
Mir
,
Moscow
,
1967
),
206
.
25.
F.
Guffarth
,
R.
Heitz
,
M.
Geller
,
C.
Kapteyn
,
H.
Born
,
R.
Sellin
,
A.
Hoffmann
,
D.
Bimberg
,
N. A.
Sobolev
, and
M. C.
Carmo
,
Appl. Phys. Lett.
82
,
1941
(
2003
).
26.
O. F.
Yilmaz
,
S.
Chaudhary
, and
M.
Ozkan
,
Nanotechnology
17
,
3662
(
2006
).
You do not currently have access to this content.