Surface plasmon resonance has been investigated in a quantum well (QW) GaAs microstructure the photoluminescence (PL) of which is coupled via a submicrometer period grating with surface plasmons (SPs) propagating at SiO2Au-dielectric interfaces. Introduction of the SiO2 layer allowed to increase both the propagation length and the penetration depth of SPs and, consequently, achieve their enhanced interaction with the QW PL signal. For a QW GaAsAl0.5Ga0.5As microstructure emitting at 822nm, a modulated PL emission has been observed in agreement with the calculated resonance conditions expected for such a microstructure and the 375nm period grating.

1.
S.
Lofas
,
M.
Malmqvist
,
I.
Ronnberg
,
E.
Stenberg
,
B.
Liedberg
, and
I.
Lundstrom
,
Sens. Actuators B
5
,
79
(
1991
).
2.
B.
Liedberg
,
C.
Nylander
, and
I.
Lundstrom
,
Biosens. Bioelectron.
10
,
R1
(
1995
).
3.
J.
Melendez
,
R.
Carr
,
D. U.
Bartholomew
,
K.
Kukanskis
,
J.
Elkind
,
S.
Yee
,
C.
Furlong
, and
R.
Woodbury
,
Sens. Actuators B
35
,
212
(
1996
).
4.
J.
Homola
,
J.
Ctyroky
,
M.
Skalsky
,
J.
Hradilova
, and
P.
Kolarova
,
Sens. Actuators B
39
,
286
(
1997
).
5.
J.
Dostalek
,
J.
Ctyroky
,
J.
Homola
,
E.
Brynda
,
M.
Skalsky
,
P.
Nekvindova
,
J.
Spirkova
,
J.
Skvor
, and
J.
Schrofel
,
Sens. Actuators B
76
,
8
(
2001
).
6.
S. D.
Soelberg
,
T.
Chinowsky
,
G.
Geiss
,
C. B.
Spinelli
,
R.
Stevens
,
S.
Near
,
P.
Kauffman
,
S.
Yee
, and
C. E.
Furlong
,
J. Ind. Microbiol. Biotechnol.
32
,
669
(
2005
).
7.
P.
Adam
,
J.
Dostalek
, and
J.
Homola
,
Sens. Actuators B
113
,
774
(
2006
).
8.
G. B.
Jin
,
D. W.
Unfricht
,
S. M.
Fernandez
, and
M. A.
Lynes
,
Biosens. Bioelectron.
22
,
200
(
2006
).
9.
J. M.
Brockman
and
S. M.
Fernandez
,
Am. Lab. (Shelton, Conn.)
33
,
37
(
2001
).
10.
E.
Takeda
,
T.
Nakamura
,
M.
Fujii
,
S.
Miura
, and
S.
Hayashi
,
Appl. Phys. Lett.
89
,
101907
(
2006
).
11.
R. L.
Rich
and
D. G.
Myszka
,
Anal. Biochem.
361
,
1
(
2007
).
12.
A.
Neogi
,
C. W.
Lee
,
H. O.
Everitt
,
T.
Kuroda
,
A.
Tackeuchi
, and
E.
Yablonovitch
,
Phys. Rev. B
66
,
153305
(
2002
).
13.
K.
Okamoto
,
I.
Niki
,
A.
Shvartser
,
Y.
Narukawa
,
T.
Mukai
, and
A.
Scherer
,
Nat. Mater.
3
,
601
(
2004
).
14.
I.
Gontijo
,
M.
Boroditsky
, and
E.
Yablonovitch
,
Phys. Rev. B
60
,
11564
(
1999
).
15.
A.
Neogi
and
H.
Morkoc
,
Nanotechnology
15
,
1252
(
2004
).
16.
N. E.
Hecker
,
R. A.
Hopfel
,
N.
Sawaki
,
T.
Maier
, and
G.
Strasser
,
Appl. Phys. Lett.
75
,
1577
(
1999
).
17.
H. R.
Stuart
and
D. G.
Hall
,
Appl. Phys. Lett.
69
,
2327
(
1996
).
18.
T. W.
Ebbesen
,
H. J.
Lezec
,
H. F.
Ghaemi
,
T.
Thio
, and
P. A.
Wolff
,
Nature (London)
391
,
667
(
1998
).
19.
J. A.
Porto
,
F. J.
Garcia-Vidal
, and
J. B.
Pendry
,
Phys. Rev. Lett.
83
,
2845
(
1999
).
20.
E.
Hecht
,
Optics
, 4th ed. (
Addison-Wesley
,
Reading
,
2002
).
21.
D.
Heitmann
,
Phys. Status Solidi B
88
,
493
(
1978
).
22.
J.
Vuckovic
,
M.
Loncar
, and
A.
Scherer
,
IEEE J. Quantum Electron.
36
,
1131
(
2000
).
You do not currently have access to this content.