Ferromagnetic Bi–Cu codoped ZnO nanowires were fabricated at temperatures as low as 300°C via a vapor phase transport using the mixture of Zn, BiI3 and CuI powders. They are grown as a bicrystal, along the [011¯2] direction, have a width of 40150nm, and a length of a few microns. The investigation of the growth mechanism proposes that the synergy of BiCu and iodine/iodide induces the formation of bicrystallinity. The photoluminescence measurement shows the cooperative effect of Bi and Cu ions. The ferromagnetism observed in this study is the result of the combined effect of structural defects, the substitution of Cu into Zn site along the c axis, and codoping of Bi.

1.
P.
Sharma
,
A.
Gupta
,
K. V.
Rao
,
F. J.
Owens
,
R.
Sharma
,
R.
Ahuja
,
J. M. O.
Guillen
,
B.
Johansson
, and
G. A.
Gehring
,
Nat. Mater.
2
,
673
(
2003
).
2.
S.
Ramachandran
,
A.
Tiwari
, and
J.
Narayan
,
Appl. Phys. Lett.
84
,
5255
(
2004
).
3.
C. K.
Xu
,
K.
Rho
,
J.
Chun
, and
D. E.
Kim
,
Appl. Phys. Lett.
87
,
253104
(
2005
).
4.
T. S.
Herng
,
S. P.
Lau
,
S. F.
Lau
,
S. F.
Yu
,
H. Y.
Yang
,
X. H.
Ji
,
J. S.
Chen
,
N.
Yasui
, and
H.
Inaba
,
J. Appl. Phys.
99
,
086101
(
2006
).
5.
T. C.
Kaspar
,
S. M.
Heald
,
C. M.
Wang
,
J. D.
Bryan
,
T.
Droubay
,
V.
Shutthanandan
,
S.
Thevuthasan
,
D. E.
McCready
,
A. J.
Kellock
,
D. R.
Gamelin
, and
S. A.
Chambers
,
Phys. Rev. Lett.
95
,
217203
(
2005
).
6.
P. V.
Radovanovic
and
D. R.
Gamelin
,
Phys. Rev. Lett.
91
,
157202
(
2003
).
7.
R. N.
Bahtt
,
M.
Berciu
,
M. P.
Kennet
, and
X.
Wan
,
J. Super.: Inc.
15
,
71
(
2002
).
8.
J. M. D.
Coey
,
M.
Venkatesan
, and
C. B.
Fitzgerald
,
Nat. Mater.
4
,
173
(
2005
).
9.
JCPDS Card No. 36-1451 Plenum Publishing Corporation.
10.
S.
Kolesnik
,
B.
Dabrowski
, and
J.
Mais
,
J. Appl. Phys.
95
,
2582
(
2004
).
11.
X.
Feng
,
J. Phys.: Condens. Matter
16
,
4251
(
2004
).
12.
C. K.
Xu
,
D. E.
Kim
,
J.
Chun
,
K.
Rho
,
B.
Chon
,
S.
Hong
, and
T.
Joo
,
J. Phys. Chem. B
110
,
2174
(
2006
).
13.
J. J.
Wu
,
H. I.
Wen
,
C. H.
Tseng
, and
S. C.
Liu
,
Adv. Funct. Mater.
14
,
806
(
2004
).
14.
Y. C.
Kong
,
D. P.
Yu
,
B.
Zhang
,
W.
Fang
, and
S. Q.
Feng
,
Appl. Phys. Lett.
78
,
407
(
2001
).
15.
S.
Zhou
,
X.
Zhang
,
X.
Meng
,
K.
Zou
,
X.
Fan
,
S.
Wu
, and
S.
Lee
,
Nanotechnology
15
,
1152
(
2004
).
16.
N. Y.
Garces
,
L.
Wang
,
L.
Bai
,
N. C.
Giles
, and
L. E.
Halliburton
,
Appl. Phys. Lett.
81
,
622
(
2002
).
17.
C. K.
Xu
,
K.
Rho
,
J.
Chun
, and
D.
Kim
,
Nanotechnology
17
,
60
(
2006
).
18.
C. K.
Xu
,
J.
Chun
,
K.
Rho
,
H.
Lee
,
Y.
Jeong
, and
D. E.
Kim
,
Appl. Phys. Lett.
89
,
093117
(
2006
).
19.
G.
Buscher
,
M. F.
Chisholm
,
U.
Alber
, and
M.
Ruhle
,
Nat. Mater.
3
,
621
(
2004
).
20.
A. M.
Donald
and
L. M.
Brown
,
Acta Metall.
27
,
59
(
1979
).
21.
Z. L.
Wang
,
X. Y.
Kong
,
Y.
Ding
,
P.
Gao
,
W.
Hughes
,
R.
Yang
, and
Y.
Zhang
,
Adv. Funct. Mater.
14
,
904
(
2004
).
22.
Y.
Song
,
Y.
Niu
,
H.
Hou
, and
Y.
Zhu
,
J. Mol. Struct.
689
,
69
(
2004
).
You do not currently have access to this content.