Remarkable reductions in the velocity of magnetic-field (or electric current)-driven domain-wall (DW) motions in ferromagnetic nanostripes have typically been observed under magnetic fields stronger than the Walker threshold field [N. L. Schryer and L. R. Walker, J. Appl. Phys.45, 5406 (1974)]. This velocity breakdown is known to be associated with an oscillatory dynamic transformation between transverse- and antivortex (or vortex)-type DWs during their propagations. The authors propose, as the result of numerical calculations, a simple means to suppress the velocity breakdown and rather enhance the DW velocities, using a magnetic underlayer of strong perpendicular magnetic anisotropy. This underlayer plays a crucial role in preventing the nucleation of antivortex (or vortex)-type DWs at the edges of nanostripes, in the process of periodic dynamic transformations from the transverse into antivortex- or vortex-type wall. The present study not only offers a promising means of the speedup of DW propagations to levels required for their technological application to ultrafast information-storage or logic devices, but also provides insight into its underlying mechanism.

1.
R.
Cowburn
and
D.
Petit
,
Nat. Mater.
4
,
721
(
2005
).
2.
Y.
Nakatani
,
A.
Thiaville
, and
J.
Miltat
,
Nat. Mater.
2
,
521
(
2003
).
3.
D.
Atkinson
,
D. A.
Allwood
,
G.
Xiong
,
M. D.
Cooke
,
C. C.
Faulkner
, and
R. P.
Cowburn
,
Nat. Mater.
2
,
85
(
2003
).
4.
G. S. D.
Beach
,
C.
Nistor
,
C.
Knutson
,
M.
Tsoi
, and
J. L.
Erskine
,
Nat. Mater.
4
,
741
(
2005
).
5.
L.
Thomas
,
C.
Rettner
,
M.
Hayashi
,
M. G.
Samant
,
S. S. P.
Parkin
,
A.
Doran
, and
A.
Scholl
,
Appl. Phys. Lett.
87
,
262501
(
2005
).
6.
L.
Thomas
,
M.
Hayashi
,
X.
Jiang
,
R.
Moriya
,
C.
Rettner
, and
S. S. P.
Parkin
,
Nature (London)
443
,
197
(
2006
).
7.
A.
Yamaguchi
,
T.
Ono
,
S.
Nasu
,
K.
Miyake
,
K.
Mibu
, and
T.
Shinjo
,
Phys. Rev. Lett.
92
,
077205
(
2004
).
8.
M.
Kläui
,
P.-O.
Jubert
,
R.
Allenspach
,
A.
Bischof
,
J. A. C.
Bland
,
G.
Faini
,
U.
Rüdiger
,
C. A. F.
Vaz
,
L.
Vila
, and
C.
Vouille
,
Phys. Rev. Lett.
95
,
026601
(
2005
).
9.
G. S. D.
Beach
,
C.
Knutson
,
C.
Nistor
,
M.
Tsoi
, and
J. L.
Erskine
,
Phys. Rev. Lett.
97
,
057203
(
2006
).
10.
M.
Hayashi
,
L.
Tomas
,
C.
Rettner
,
R.
Moriya
, and
S. S. P.
Parkin
,
Nat. Phys.
3
,
21
(
2007
).
11.
J.
Grollier
,
P.
Boulenc
,
V.
Cros
,
A.
Hamzić
,
A.
Vaurès
,
A.
Fert
, and
G.
Faini
,
Appl. Phys. Lett.
83
,
509
(
2003
).
12.
D. A.
Allwood
,
G.
Xiong
,
C. C.
Faulkner
,
D.
Atkinson
,
D.
Petit
, and
R. P.
Cowburn
,
Science
309
,
1688
(
2005
).
13.
Y.
Nakatani
,
A.
Thiaville
, and
J.
Miltat
,
J. Magn. Magn. Mater.
290-291
,
750
(
2005
).
14.
N. L.
Schryer
and
L. R.
Walker
,
J. Appl. Phys.
45
,
5406
(
1974
).
15.
S. W.
Yuan
and
H. N.
Bertram
,
Phys. Rev. B
44
,
12395
(
1991
).
16.
B. N.
Filippov
,
Low Temp. Phys.
28
,
707
(
2002
).
17.
D. J.
Breed
,
A. M. J.
van der Heijden
,
H.
Logmans
, and
A. B.
Voermans
,
J. Appl. Phys.
49
,
939
(
1978
).
18.
W. T.
Stacy
,
A. B.
Voermans
, and
H.
Logmans
,
Appl. Phys. Lett.
29
,
817
(
1976
).
19.
J.-Y.
Lee
,
S.
Choi
, and
S.-K.
Kim
,
J. Magnetics
11
,
74
(
2006
).
20.

To check whether the unit-cell size affects the simulation results, we additionally conducted the same simulations using a finer cell size of 2.5×2.5×11nm3, but the results of both cases agree quite well within less than 1% difference.

21.
S.
Choi
,
K.-S.
Lee
, and
S.-K.
Kim
,
Appl. Phys. Lett.
89
,
062501
(
2006
).
22.
K.-S.
Lee
,
S.
Choi
, and
S.-K.
Kim
,
Appl. Phys. Lett.
87
,
192502
(
2005
).
23.
M. J.
Donahue
and
D. G.
Porter
, OOMMF code (see http://math.nist.gov/oommf).
24.
J.-Y.
Lee
,
K.-S.
Lee
,
S.
Choi
,
K. Y.
Guslienko
, and
S.-K.
Kim
,
Phys. Rev. B
(in press).
You do not currently have access to this content.