A phase-field model was developed for studying the magnetoelectric coupling effect in epitaxial ferroelectric and magnetic nanocomposite thin films. The model can simultaneously take into account the ferroelectric and magnetic domain structures, the electrostrictive and magnetostrictive effects, substrate constraint, as well as the long-range interactions such as magnetic, electric, and elastic interactions. As an example, the magnetic-field-induced electric polarization in BaTiO3CoFe2O4 nanocomposite film was analyzed. The effects of the film thickness, morphology of the nanocomposite, and substrate constraint on the degree of magnetoelectric coupling were discussed.

2.
N. A.
Spaldin
and
M.
Fiebig
,
Science
309
,
391
(
2005
).
3.
W.
Prellier
,
M. P.
Singh
, and
P.
Murugavel
,
J. Phys.: Condens. Matter
17
,
R803
(
2005
).
4.
G.
Harshe
, Ph.D. thesis,
Pennsylvania State University
,
1991
.
5.
S. X.
Dong
,
J. R.
Cheng
,
J. F.
Li
, and
D.
Viehland
,
Appl. Phys. Lett.
83
,
4812
(
2003
).
6.
J.
Ryu
,
S.
Priya
,
K.
Uchino
, and
H.
Kim
,
J. Electroceram.
8
,
107
(
2002
).
7.
J.
Zhai
,
N.
Cai
,
Z.
Shi
,
Y.
Lin
, and
C. W.
Nan
,
J. Appl. Phys.
95
,
5685
(
2004
).
8.
H.
Zheng
,
J.
Wang
,
S. E.
Lofland
,
Z.
Ma
,
L.
Mohaddes-Ardabili
,
T.
Zhao
,
L.
Salamanca-Riba
,
S. R.
Shinde
,
S. B.
Ogale
,
F.
Bai
,
D.
Viehland
,
Y.
Jia
,
D. G.
Schlom
,
M.
Wuttig
,
A.
Roytburd
, and
R.
Ramesh
,
Science
303
,
661
(
2004
).
9.
F.
Zavaliche
,
H.
Zheng
,
L.
Mohaddes-Ardabili
,
S. Y.
Yang
,
Q.
Zhan
,
P.
Shafer
,
E.
Reilly
,
R.
Chopdekar
,
Y.
Jia
,
P.
Wright
,
D. G.
Schlom
,
Y.
Suzuki
, and
R.
Ramesh
,
Nano Lett.
5
,
1793
(
2005
).
10.
C. W.
Nan
,
G.
Liu
,
Y.
Lin
, and
H.
Chen
,
Phys. Rev. Lett.
94
,
197203
(
2005
).
11.
G.
Liu
,
C. W.
Nan
,
Z. K.
Xu
, and
H.
Chen
,
J. Phys. D
38
,
2321
(
2005
).
12.
G.
Liu
,
C. W.
Nan
, and
J.
Sun
,
Acta Mater.
54
,
917
(
2006
).
13.
Y. L.
Li
,
S. Y.
Hu
,
Z. K.
Liu
, and
L. Q.
Chen
,
Acta Mater.
50
,
395
(
2002
).
14.
A. G.
Khachaturyan
,
Theory of Structural Transformation in Solids
(
Wiley
,
New York
,
1983
), p.
198
.
15.
A. N.
Stroh
,
J. Math. Phys.
41
,
77
(
1962
).
16.
J. X.
Zhang
and
L. Q.
Chen
,
Acta Mater.
53
,
2845
(
2005
).
17.
Y. L.
Li
and
L. Q.
Chen
,
Appl. Phys. Lett.
88
,
072905
(
2006
).
18.

For BaTiO3, α1=4.124(T115)×105, α11=2.097×108, α12=7.974×108, α111=1.294×109, α112=1.950×109, α123=2.500×109, α1111=3.863×1010, α1112=2.529×1010, α1122=1.637×1010, α1123=1.367×1010, Q11=0.10, Q12=0.034, and Q44=0.029. For CoFe2O4, Ms=4×105, λ100=590×106, λ111=120×106, K1=3×105, K2=0, and A=7×1012. T=25°C. For simplicity, we assumed elastic homogeneity in this work, and the elastic constants of BaTiO3 are used, i.e., c11=1.78×1011, c12=0.96×1011, and c44=1.22×1011 (in SI units).

19.
Y. L.
Li
,
L. E.
Cross
, and
L. Q.
Chen
,
J. Appl. Phys.
98
,
064101
(
2005
).
20.
T.
Yamada
,
J. Appl. Phys.
43
,
328
(
1972
).
21.
Y.
Suzuki
,
R. B.
van Dover
,
E. M.
Gyorgy
,
J. M.
Phillips
, and
R. J.
Felder
,
Phys. Rev. B
53
,
14016
(
1996
).
22.
R. M.
Bozorth
,
E. F.
Tilden
, and
A. J.
Williams
,
Phys. Rev.
99
,
1788
(
1955
).
23.
A. F.
Devonshire
,
Philos. Mag.
42
,
1065
(
1951
).
24.
J.
Padilla
,
W.
Zhong
, and
D.
Vanderbilt
,
Phys. Rev. B
53
,
R5969
(
1996
).
25.
K. J.
Choi
,
M.
Biegalski
,
Y. L.
Li
,
A.
Sharan
,
J.
Schubert
,
R.
Uecker
,
P.
Reiche
,
Y. B.
Chen
,
X. Q.
Pan
,
V.
Gopalan
,
L. Q.
Chen
,
D. G.
Schlom
, and
C. B.
Eom
,
Science
306
,
1005
(
2004
).
26.
H. M.
Zheng
,
Q.
Zhan
,
F.
Zavaliche
,
M.
Sherburne
,
F.
Straub
,
M. P.
Cruz
,
L. Q.
Chen
,
U.
Dahmen
, and
R.
Ramesh
,
Nano Lett.
6
,
1401
(
2006
).
27.
A.
Artemev
,
J.
Slutsker
, and
A. L.
Roytburd
,
Acta Mater.
53
,
3425
(
2005
).
28.
J.
Slutsker
,
I.
Levin
,
J. H.
Li
,
A.
Artemev
, and
A. L.
Roytburd
,
Phys. Rev. B
73
,
184127
(
2006
).
You do not currently have access to this content.