An alternative method for the formation of the top oxide in oxide-nitride-oxide dielectric stacks is proposed. This method combines low-energy (1keV) silicon ion implantation into a thin nitride-oxide stack and subsequent low-temperature wet oxidation (850°C for 15min). Transmission electron microscopy shows that for an implanted dose of 1.5×1016Sicm2, an 8-nm-thick silicon oxide layer develops on the surface of the nitride-oxide stack. Time of flight secondary ion mass spectrometry reveals: (1) transformation of the implanted silicon nitride to an oxygen-rich-silicon nitride layer and (2) pilling up of nitrogen atoms at the bottom silicon/oxide-substrate interface. The resulting oxide-nitride-oxide stack exhibits strong charge storage effects and excellent charge retention properties leading to a 1.5V, 10yr extrapolated memory window at 125°C. These results suggest that the proposed fabrication route may lead to gate dielectric stacks of substantial potential impact for mainstream nitride-based memory devices.

1.
C. Y.
Lu
,
T. C.
Lu
, and
R.
Liu
,
Proceedings of the 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits
(IPFA), Singapore, July 2006, p.
18
.
2.
M. H.
White
,
Y.
Wang
,
S. J.
Wrazien
, and
Y.
Zhao
,
Int. J. High Speed Electron. Syst.
16
,
479
(
2006
).
3.
R.
van Schaijk
,
M.
Slotboom
,
M.
van Duuren
,
D.
Dormans
,
N.
Akil
,
R.
Beurze
,
F.
Neuilly
,
W.
Baks
,
A. H.
Miranda
, and
P. G.
Tello
,
Solid-State Electron.
49
,
1849
(
2006
).
4.
L. U. T.
Ogbuli
and
D. T.
Jayne
,
J. Electrochem. Soc.
140
,
759
(
1993
).
5.
H.
Du
,
R. E.
Tressler
, and
K. E.
Spear
,
J. Electrochem. Soc.
136
,
3210
(
1989
).
6.
E.
Suzuki
,
Y.
Hayashi
,
K.
Ishii
, and
T.
Tsuchiya
,
Appl. Phys. Lett.
42
,
608
(
1982
).
7.
M.
Saraf
,
R.
Edrei
,
R.
Akhvlediani
,
Y.
Roizin
,
R.
Shima-Edelstein
, and
A.
Hoffman
,
24
,
1716
(
2006
).
8.
V.
Ioannou-Sougleridis
,
P.
Dimitrakis
,
V.
Em. Vamvakas
,
P.
Normand
,
C.
Bonafos
,
S.
Schamm
,
A.
Mouti
,
G.
Ben Assayag
, and
V.
Paillard
,
Nanotechnology
18
,
215204
(
2007
).
9.
C.
Bonafos
,
M.
Carrada
,
N.
Cherkashin
,
H.
Coffin
,
D.
Chassaing
,
G.
Ben Assayag
,
A.
Claverie
,
T.
Muller
,
K. H.
Heinig
,
M.
Perego
,
M.
Fanciulli
,
P.
Dimitrakis
, and
P.
Normand
,
J. Appl. Phys.
95
,
5696
(
2004
).
10.
P.
Normand
,
E.
Kapetanakis
,
P.
Dimitrakis
,
D.
Skarlatos
,
K.
Beltsios
,
D.
Tsoukalas
,
C.
Bonafos
,
G.
Ben Assayag
,
N.
Cherkashin
,
A.
Claverie
,
J. A.
Van Den Berg
,
V.
Soncini
,
A.
Agarwal
,
M.
Ammen
,
M.
Perego
, and
M.
Fanciulli
,
Nucl. Instrum. Methods Phys. Res. B
216
,
228
(
2004
).
11.
S. Y.
Wang
,
H. T.
Lue
,
E. K.
Lai
,
L. W.
Yang
,
J.
Gong
,
K. C.
Chen
,
K. Y.
Hsieh
,
J.
Ku
, and
C. Y.
Lu
,
Solid-State Electron.
50
,
1171
(
2006
).
12.
M.
Petersen
and
Y.
Roizin
,
Appl. Phys. Lett.
89
,
053511
(
2006
).
You do not currently have access to this content.