Axial strain is introduced into individual single wall carbon nanotubes (SWCNTs) suspended from a trench-containing substrate by employing the van der Waals interaction between the SWCNT and the substrate. Resonance Raman spectroscopy is used to characterize the strain, and up to 3% axial strain is observed. It is also found that a significant friction between the SWCNT and the substrate, on the order of , governs the localization and propagation of the strain in the SWCNTs sitting on the substrate. This method can be applied to introduce strain into materials sitting on a substrate, such as a graphene sheet.
REFERENCES
1.
2.
L.
Yang
and J.
Han
, Phys. Rev. Lett.
85
, 154
(2000
).3.
R.
Hyed
, A.
Charlier
, and E.
McRae
, Phys. Rev. B
55
, 6820
(1997
).4.
E. D.
Minot
, Y.
Yaish
, V.
Sazonova
, J.-Y.
Park
, M.
Brink
, and P. L.
McEuen
, Phys. Rev. Lett.
90
, 156401
(2003
).5.
S. B.
Cronin
, A. K.
Swan
, M. S.
Ünlü
, B. B.
Goldberg
, M. S.
Dresselhaus
, and M.
Tinkham
, Phys. Rev. Lett.
93
, 167401
(2004
).6.
T.
Hertel
, R. E.
Walkup
, and P.
Avouris
, Phys. Rev. B
58
, 13870
(1998
).7.
8.
L. X.
Zheng
, M. J.
O’Connel
, S. K.
Doorn
, X. Z.
Liao
, Y. H.
Zhao
, E. A.
Akhadov
, M. A.
Hoffbauer
, B. J.
Roop
, Q. X.
Jia
, R. C.
Dye
, D. E.
Peterson
, S. M.
Huang
, J.
Liu
, and Y. T.
Zhu
, Nat. Mater.
3
, 673
(2004
).9.
For the SWNT in Fig. 3, we found two radial breathing mode (RBM) peaks at 128 and . In the plot of the RBM peak frequencies vs resonant transition energies based on the extended tight binding model (Ref. 17), RBM peaks at 128 and correspond to semiconducting and metallic SWCNTs, respectively. We conclude that this is a bundle of a semiconducting SWCNT and a metallic SWCNT. The broad peak at , which shows a Breit-Wigner-Fano line shape, corresponds to the metallic SWCNT in the bundle (Ref. 18). We also see changes in the Raman intensity along the length of the SWCNTs [Fig. 3(c)]. This is expected due to the change in the electronic transition energies when the SWCNT is under strain (Refs. 2 and 3).
10.
The typical full width at half maximum linewidth of the band is about and the typical peak accuracy of the band is about .
11.
A.
Jorio
, M. A.
Pimenta
, A. G.
Souza Filho
, Ge. G.
Samsonidze
, A. K.
Swan
, M. S.
Ünlü
, B. B.
Goldberg
, R.
Saito
, G.
Dresselhaus
, and M. S.
Dresselhaus
, Phys. Rev. Lett.
90
, 107403
(2004
).12.
J. P.
Lu
, Phys. Rev. Lett.
79
, 1297
(1997
).13.
Y.
Zhao
, C. C.
Ma
, G.
Chen
, and Q.
Jiang
, Phys. Rev. Lett.
91
, 175504
(2004
).14.
J.
Cumings
and A.
Zettl
, Science
289
, 602
(2000
).15.
K. S.
Novoselov
, A. K.
Geim
, S. V.
Morozov
, D.
Jiang
, M. I.
Katsnelson
, I. V.
Grigorieva
, S. V.
Dubonos
, and A. A.
Firsov
, Nature (London)
438
, 197
(2005
).16.
Y.
Zhang
, Y. W.
Tan
, H. L.
Stormer
, and Philip
Kim
, Nature (London)
438
, 201
(2005
).17.
Ge. G.
Samsonidze
, R.
Saito
, N.
Kobayashi
, A.
Grüneis
, J.
Jiang
, A.
Jorio
, S. G.
Chou
, G.
Dresselhaus
, and M. S.
Dresselhaus
, Appl. Phys. Lett.
85
, 5703
(2004
).18.
H.
Kataura
, Y.
Kumazawa
, Y.
Maniwa
, I.
Umezu
, S.
Suzuki
, Y.
Ohtsuka
, and Y.
Achiba
, Synth. Met.
103
, 2555
(1999
).© 2007 American Institute of Physics.
2007
American Institute of Physics
You do not currently have access to this content.