Single crystalline ZnO nanowires (NWs) with a circular cross section and in diameter have been synthesized and utilized to fabricate two-contact ZnO NW devices. The electrical properties of the NW devices can be categorized into two classes according to the magnitude of their room-temperature resistances. curves of low-resistance devices exhibit downward bending features and their temperature dependent resistances demonstrate thermal activation transport in the ZnO NWs. The high-resistance NW devices can be modeled as back-to-back Schottky contacts and the electron transport through the contacts reveals a variable-range-hopping mechanism.
REFERENCES
1.
D. M.
Bagnall
, Y. F.
Chen
, Z.
Zhu
, T.
Yao
, S.
Koyama
, M. Y.
Shen
, and T.
Goto
, Appl. Phys. Lett.
70
, 2230
(1997
).2.
Z. K.
Tang
, G. K. L.
Wong
, P.
Yu
, M.
Kawasaki
, A.
Ohtomo
, H.
Koinuma
, and Y.
Segawa
, Appl. Phys. Lett.
72
, 3270
(1998
).3.
A.
Tiwari
, C.
Jin
, J.
Narayan
, and M.
Park
, J. Appl. Phys.
96
, 3827
(2004
).4.
Y. W.
Heo
, S. J.
Park
, K.
Ip
, S. J.
Pearton
, and D. P.
Norton
, Appl. Phys. Lett.
83
, 1128
(2003
).5.
S.
Kim
, B. S.
Kang
, F.
Ren
, Y. W.
Heo
, K.
Ip
, D. P.
Norton
, and S. J.
Pearton
, Appl. Phys. Lett.
84
, 1904
(2004
).6.
K.
Ip
, G. T.
Thaler
, H.
Yang
, S. Y.
Han
, Y.
Li
, D. P.
Norton
, S. J.
Pearton
, S.
Jang
, and F.
Ren
, J. Cryst. Growth
287
, 149
(2006
).7.
S. J.
Pearton
, D. P.
Norton
, K.
Ip
, Y. W.
Heo
, and T.
Steiner
, J. Vac. Sci. Technol. B
22
, 932
(2004
).8.
S. B.
Zhang
, S.-H.
Wei
, and A.
Zunger
, Phys. Rev. B
63
, 075205
(2001
).9.
M. H.
Huang
, Y.
Wu
, H.
Feick
, N.
Tran
, E.
Weber
, and P.
Yang
, Adv. Mater. (Weinheim, Ger.)
13
, 113
(2001
).10.
X.
Duan
, Y.
Huang
, Y.
Chi
, J.
Wang
, and C. M.
Lieber
, Nature (London)
409
, 66
(2001
).11.
H.
Kind
, H.
Yan
, B.
Messer
, M.
Law
, and P.
Yang
, Adv. Mater. (Weinheim, Ger.)
14
, 158
(2002
).12.
Q. H.
Li
, Y. X.
Liang
, Q.
Wan
, and T. H.
Wang
, Appl. Phys. Lett.
85
, 6389
(2004
).13.
Z.
Fan
and J. G.
Lu
, Appl. Phys. Lett.
86
, 123510
(2005
).14.
Y. W.
Heo
, L. C.
Tien
, Y.
Kwon
, D. P.
Norton
, S. J.
Pearton
, B. S.
Kang
, and F.
Ren
, Appl. Phys. Lett.
85
, 2274
(2004
).15.
W. I.
Park
, J. S.
Kim
, G. C.
Yi
, M. H.
Bae
, and H.-J.
Lee
, Appl. Phys. Lett.
85
, 5052
(2004
).16.
Z.
Fan
, D.
Wang
, P. C.
Chang
, W. Y.
Tseng
, and J. G.
Lu
, Appl. Phys. Lett.
85
, 5923
(2004
).17.
S.
Ju
, K.
Lee
, D. B.
Janes
, M. H.
Yoon
, A.
Facchetti
, and T. J.
Marks
, Nano Lett.
5
, 2281
(2005
).18.
Y. W.
Heo
, L. C.
Tien
, D. P.
Norton
, S. J.
Pearton
, B. S.
Kang
, F.
Ren
, and J. R.
LaRoche
, Appl. Phys. Lett.
85
, 3107
(2004
).19.
C. S.
Lao
, J.
Liu
, P.
Gao
, L.
Zhang
, D.
Davidovic
, R.
Tummala
, and Z. L.
Wang
, Nano Lett.
6
, 263
(2006
).20.
Q. H.
Li
, Q.
Wan
, Y. X.
Liang
, and T. H.
Wang
, Appl. Phys. Lett.
84
, 4556
(2004
).21.
Y. W.
Heo
, L. C.
Tien
, D. P.
Norton
, B. S.
Kang
, F.
Ren
, G. P.
Gila
, and S. J.
Pearton
, Appl. Phys. Lett.
85
, 2002
(2004
).22.
Y. J.
Ma
, Z.
Zhang
, F.
Zhou
, L.
Lu
, A.
Jin
, and C.
Gu
, Nanotechnology
16
, 746
(2005
).23.
Z. Y.
Zhang
, C. H.
Jin
, X. L.
Liang
, Q.
Chen
, and L.-M.
Peng
, Appl. Phys. Lett.
88
, 073102
(2006
).24.
X.
Lin
, X. B.
He
, T. Z.
Yang
, W.
Guo
, D. X.
Shi
, H.-J.
Gao
, D. D. D.
Ma
, S. T.
Lee
, F.
Liu
, and X. C.
Xie
, Appl. Phys. Lett.
89
, 043103
(2006
).25.
Z. Y.
Wu
, F. R.
Chen
, J. J.
Kai
, W. B.
Jian
, and J. J.
Lin
, Nanotechnology
17
, 5511
(2006
).26.
27.
N. F.
Mott
and E. A.
Davis
, Electronic Processes in Non-Crystalline Materials
, 2nd ed. (Clarendon
, Oxford
, 1979
), p. 34
.© 2007 American Institute of Physics.
2007
American Institute of Physics
You do not currently have access to this content.