The triplet annihilation dynamics of near infrared organic light-emitting devices are studied with peak electrophosphorescence at a wavelength of 772nm using a platinum-porphyrin derivative Pt(II)-tetraphenyltetrabenzoporphyrin as dopant. Both the photoluminescent decay transients of the thin films and the quantum efficiency versus current density characteristics of devices using tris(8-hydroxyquinoline) aluminum or 4,4-bis(N-carbazolyl)biphenyl (CBP) as hosts are fitted by a model based on triplet-triplet annihilation. When the phosphor is codoped with Ir(III) bis(2-phenyl quinolyl-N,C2) acetylacetonate in CBP, the quantum efficiency is enhanced, and the observed decrease of efficiency at high current densities is explained by field-induced charge pair dissociation. The external quantum efficiency has a maximum of (8.5±0.3)%, decreasing to (5.0±0.3)% at 1mAcm2.

1.
M. A.
Baldo
,
D. F.
O’Brien
,
Y.
You
,
A.
Shoustikov
,
S.
Sibley
,
M. E.
Thompson
, and
S. R.
Forrest
,
Nature (London)
395
,
151
(
1998
).
2.
K. S.
Schanze
,
J. R.
Reynolds
,
J. M.
Boncella
,
B. S.
Harrison
,
T. J.
Foley
,
M.
Bouguettaya
, and
T. S.
Kang
,
Synth. Met.
137
,
1013
(
2003
).
3.
J. C.
Ostrowski
,
K.
Susumu
,
M. R.
Robinson
,
M. J.
Therien
, and
G. C.
Bazan
,
Adv. Mater. (Weinheim, Ger.)
15
,
1296
(
2003
).
4.
L. H.
Slooff
,
A.
Polman
,
F.
Cacialli
,
R. H.
Friend
,
G. A.
Hebbink
,
F.
van Veggel
, and
D. N.
Reinhoudt
,
Appl. Phys. Lett.
78
,
2122
(
2001
).
5.
H.
Suzuki
,
Appl. Phys. Lett.
76
,
1543
(
2000
).
6.
Y.
Kawamura
,
Y.
Wada
, and
S.
Yanagida
,
Jpn. J. Appl. Phys., Part 1
40
,
350
(
2001
).
7.
H. Y.
Chen
,
C. H.
Yang
,
Y.
Chi
,
Y. M.
Cheng
,
Y. S.
Yeh
,
P. T.
Chou
,
H. Y.
Hsieh
,
C. S.
Liu
,
S. M.
Peng
, and
G. H.
Lee
,
Can. J. Chem.
84
,
309
(
2006
).
8.
E. L.
Williams
,
J.
Li
, and
G. E.
Jabbour
,
Appl. Phys. Lett.
89
,
083506
(
2006
).
9.
C.
Borek
,
K.
Hanson
,
P. I.
Djurovich
,
M. E.
Thompson
,
K.
Aznavour
,
R.
Bau
,
Y.
Sun
,
S. R.
Forrest
,
J.
Brooks
,
L.
Michalski
, and
J. J.
Brown
,
Angew. Chem., Int. Ed.
46
,
1109
(
2007
).
10.
M. A.
Baldo
and
S. R.
Forrest
,
Phys. Rev. B
62
,
10958
(
2000
).
11.
D. K.
Rayabarapu
,
B.
Paulose
,
J. P.
Duan
, and
C. H.
Cheng
,
Adv. Mater. (Weinheim, Ger.)
17
,
349
(
2005
).
12.
J. E.
Rogers
,
K. A.
Nguyen
,
D. C.
Hufnagle
,
D. G.
McLean
,
W. J.
Su
,
K. M.
Gossett
,
A. R.
Burke
,
S. A.
Vinogradov
,
R.
Pachter
, and
P. A.
Fleitz
,
J. Phys. Chem. A
107
,
11331
(
2003
).
13.
M. A.
Baldo
,
C.
Adachi
, and
S. R.
Forrest
,
Phys. Rev. B
62
,
10967
(
2000
).
14.
D. Z.
Garbuzov
,
V.
Bulovic
,
P. E.
Burrows
, and
S. R.
Forrest
,
Chem. Phys. Lett.
249
,
433
(
1996
).
15.
N.
Matsusue
,
S.
Ikame
,
Y.
Suzuki
, and
H.
Naito
,
J. Appl. Phys.
97
,
123512
(
2005
).
16.
I. G.
Hill
,
A.
Kahn
,
Z. G.
Soos
, and
R. A.
Pascal
,
Chem. Phys. Lett.
327
,
181
(
2000
).
17.
M. A.
Baldo
,
D. F.
O’Brien
,
M. E.
Thompson
, and
S. R.
Forrest
,
Phys. Rev. B
60
,
14422
(
1999
).
18.
R. J.
Holmes
,
S. R.
Forrest
,
T.
Sajoto
,
A.
Tamayo
,
P. I.
Djurovich
, and
M. E.
Thompson
,
Org. Electron.
7
,
163
(
2006
).
You do not currently have access to this content.