Micromagnetic investigation was performed on the influence of neighboring cells in a conventional rectangular array to the switching current density (Jc) in the current-induced magnetization switching. We found that the Jc was increased regardless of the relative switching direction to the overall stray field. It is because the precession of the magnetization in the switching cell induces a resonant precession in neighboring cells through magnetostatic interaction. The resonant precession disturbs a fast reversal and results in the enhanced Jc for a fixed pulse width. The enhancement increases as the distance between the cells decreases. Here we proposed a zigzag array which significantly suppresses the enhancement of Jc due to the resonant precession.

1.
J. C.
Slonczewski
,
J. Magn. Magn. Mater.
159
,
L1
(
1996
).
2.
3.
M.
Tsoi
,
A. G. M.
Jansen
,
J.
Bass
,
W. C.
Chiang
,
M.
Seck
,
V.
Tsoi
, and
P.
Wyder
,
Phys. Rev. Lett.
80
,
4281
(
1998
).
4.
E. B.
Myers
,
D. C.
Ralph
,
J. A.
Katine
,
R. N.
Louie
, and
R. A.
Buhrman
,
Science
285
,
867
(
1999
).
5.
J. Z.
Sun
,
J. Magn. Magn. Mater.
202
,
157
(
1999
).
6.
J. A.
Katine
,
F. J.
Albert
,
R. A.
Buhrman
,
E. B.
Myers
, and
D. C.
Ralph
,
Phys. Rev. Lett.
84
,
3149
(
2000
).
7.
S. I.
Kiselev
,
J. C.
Sankey
,
I. N.
Krivorotov
,
N. C.
Emley
,
R. J.
Schoelkopf
,
R. A.
Buhrman
, and
D. C.
Ralpha
,
Nature (London)
425
,
308
(
2003
).
8.
J. Z.
Sun
,
Nature (London)
425
,
359
(
2003
).
9.
10.
The switching current density is a bit larger than the value given in the Eq. (1). More detailed expression including thermal effect can be found in
P. B.
Visscher
and
D. M.
Apalkov
,
J. Appl. Phys.
97
,
10C704
(
2005
).
11.
F. J.
Albert
,
N. C.
Emley
,
E. B.
Myers
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Phys. Rev. Lett.
89
,
226802
(
2002
).
12.
L.
Berger
,
J. Appl. Phys.
93
,
7693
(
2003
).
13.
Y.
Jiang
,
T.
Nozaki
,
S.
Abe
,
T.
Ochiai
,
A.
Hirohata
,
N.
Tezuka
, and
K.
Inomata
,
Nat. Mater.
3
,
361
(
2004
).
14.
H. Y. T.
Nguyen
,
H.
Yi
,
S. J.
Joo
,
K. H.
Shin
,
K. J.
Lee
, and
B.
Dieny
,
Appl. Phys. Lett.
89
,
094103
(
2006
).
15.
K.
Yagami
,
A. A.
Tulapurkar
,
A.
Fukushima
, and
Y.
Suzuki
,
Appl. Phys. Lett.
85
,
5634
(
2004
).
16.
T.
Devolder
,
C.
Chappert
,
P.
Crozat
,
A.
Tulapurkar
,
Y.
Suzuki
,
J.
Miltat
, and
K.
Yagami
,
Appl. Phys. Lett.
86
,
062505
(
2005
).
17.
T.
Devolder
,
P.
Crozat
,
J.-V.
Kim
,
C.
Chappert
,
K.
Ito
,
J. A.
Katine
, and
M. J.
Carey
,
Appl. Phys. Lett.
88
,
152502
(
2006
).
18.
K. J.
Lee
,
A.
Deac
,
O.
Redon
,
J. P.
Nozieres
, and
B.
Dieny
,
Nat. Mater.
3
,
877
(
2004
).
19.
K. J.
Lee
and
B.
Dieny
,
Appl. Phys. Lett.
88
,
132506
(
2006
).
20.
K.
Ito
,
T.
Devolder
,
C.
Chappert
,
M. J.
Carey
, and
J. A.
Katine
,
Appl. Phys. Lett.
89
,
252509
(
2006
).
21.
International technological roadmaps for semiconductors (ITRS), 2006 update (http://www.itrs.net/).
22.
S. A.
Wolf
,
A. Y.
Chtchelkanova
, and
D. M.
Treger
,
IBM J. Res. Dev.
50
,
101
(
2006
).
You do not currently have access to this content.