The authors demonstrate surface-enhanced Raman scattering (SERS) detection on an optofluidic chip. Interconnected solid- and liquid-core antiresonant reflecting optical waveguides (ARROWs) form a planar beam geometry that allows for high mode intensities along microfluidic channels containing molecules optimized for SERS. The excitation power and concentration dependence of SERS from rhodamine 6G (R6G) molecules adsorbed to silver nanoparticles were systematically studied. The data can be described by a model that takes into account the microphotonic structure. Detection sensitivity to a minimum concentration of 30nM is found, demonstrating the suitability of ARROW-based optofluidic chips for high sensitivity detection with molecular specificity.

1.
D. L.
Jeanmaire
and
R. P.
Van Duyne
,
J. Electroanal. Chem. Interfacial Electrochem.
84
,
1
(
1977
).
2.
M.
Moskovits
,
Rev. Mod. Phys.
57
,
783
(
1985
).
3.
A.
Otto
,
I.
Mrozek
,
H.
Grabhorn
, and
W.
Akemann
,
J. Phys.: Condens. Matter
4
,
1143
(
1992
).
4.
K.
Kneipp
,
H.
Kneipp
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
,
J. Phys.: Condens. Matter
14
,
R597
(
2002
).
5.
S.
Nie
and
S. R.
Emory
,
Science
275
,
1102
(
1997
).
6.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L. T.
Perelman
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
,
Phys. Rev. Lett.
78
,
1667
(
1997
).
7.
M. B.
Wabuyele
,
F.
Yan
,
G. D.
Griffin
, and
T.
Vo-Dinh
,
Rev. Sci. Instrum.
76
,
063710
(
2005
).
8.
W.
Xu
,
S.
Xu
,
Z.
,
L.
Chen
,
B.
Zhao
, and
Y.
Ozaki
,
Appl. Spectrosc.
58
,
414
(
2004
).
9.
Y.
Zhang
,
C.
Gu
,
A. M.
Schwartzberg
, and
J. Z.
Zhang
,
Appl. Phys. Lett.
87
,
123105
(
2005
).
10.
H.
Yan
,
C.
Gu
,
C.
Yang
,
J.
Liu
,
G.
Jin
,
Jiatao
Zhang
,
L.
Hou
, and
Y.
Yao
,
Appl. Phys. Lett.
89
,
204101
(
2006
).
11.
D.
Yin
,
J. P.
Barber
,
A. R.
Hawkins
,
D. W.
Deamer
, and
H.
Schmidt
,
Appl. Phys. Lett.
85
,
3477
(
2004
).
12.
S.
Campopiano
,
R.
Bernini
,
L.
Zeni
, and
P. M.
Sarro
,
Opt. Lett.
29
,
1894
(
2004
).
13.
H.
Schmidt
,
D.
Yin
,
J. P.
Barber
, and
A. R.
Hawkins
,
IEEE J. Sel. Top. Quantum Electron.
11
,
519
(
2005
).
14.
D.
Yin
,
J. P.
Barber
,
A. R.
Hawkins
, and
H.
Schmidt
,
Appl. Phys. Lett.
87
,
211111
(
2005
).
15.
D.
Yin
,
J. P.
Barber
,
D. W.
Deamer
,
A. R.
Hawkins
, and
H.
Schmidt
,
Opt. Lett.
31
,
2136
(
2006
).
16.
J. P.
Barber
,
D. B.
Conkey
,
J. R.
Lee
,
N. B.
Hubbard
,
L. L.
Howell
,
D.
Yin
,
H.
Schmidt
, and
A. R.
Hawkins
,
IEEE Photonics Technol. Lett.
17
,
363
(
2005
).
17.
P.
Hildebrandt
and
M.
Stockburger
,
J. Phys. Chem.
88
,
5935
(
1984
).
18.
P. C.
Lee
and
D.
Meisel
,
J. Phys. Chem.
86
,
3391
(
1982
).
19.
C.
McLaughlin
,
D.
Graham
, and
W. E.
Smith
,
J. Phys. Chem. B
106
,
5408
(
2002
).
20.
O.
Silman
,
A.
Lepp
, and
M.
Kerker
,
J. Phys. Chem.
87
,
5319
(
1983
).
21.
A. M.
Schwartzberg
,
C. D.
Grant
,
A.
Wolcott
,
C. E.
Talley
,
T. R.
Huser
,
R.
Bogomolni
, and
J. Z.
Zhang
,
J. Phys. Chem. B
108
,
19191
(
2004
).
You do not currently have access to this content.