The authors predict a superhard semiconductor phase of Be3N2 with cubic structure using first-principles calculations. The structural, mechanical, electronic, and optical properties of the Be3N2 have been investigated. Results indicate that the predicted Be3N2 phase is a wide gap semiconductor with a direct band gap of about 2.51eV. The calculated hardness of cubic γ-Be3N2 based on Mulliken overlap population analysis in first-principles technique approaches those of B4C and B6O. The higher mechanical property can be attributed to the existence of strong Be–N–Be covalent bond chains in the cubic structure. The obtained static dielectric constant of Be3N2(4.6eV) is close to the spinel structure of Si3N4(4.7eV).

1.
R. B.
Kaner
,
J. J.
Gilman
, and
S. H.
Tolbert
,
Science
308
,
1268
(
2005
).
2.
Andreas
Zerr
,
Ralf
Riedel
,
Toshimori
Sekine
,
J. Edward
Lowther
,
Wai-Yim
Ching
, and
Isao
Tanaka
,
Adv. Mater. (Weinheim, Ger.)
18
,
2933
(
2006
), and references therein.
3.
F. M.
Gao
,
L.
Hou
, and
Y. H.
He
,
J. Phys. Chem. B
108
,
13069
(
2004
).
4.
L.
Passetini
,
Gazz. Chim. Ital.
58
,
655
(
1928
).
5.
A.
Reyes-Serrato
,
G.
Soto
,
A.
Gamietea
, and
M. H.
Farias
,
J. Phys. Chem. Solids
59
,
743
(
1998
).
6.
Ma. Guadalupe Moreno
Armenta
,
Armando
Reyes-Serrato
, and
Miguel Avalos
Borja
,
Phys. Rev. B
62
,
4890
(
2000
).
7.
G.
Soto
,
J. A.
Daz
,
R.
Machorro
,
A.
Reyes-Serrato
, and
W.
dela Cruz
,
Mater. Lett.
52
,
29
(
2002
).
8.
A.
Mokhtari
and
H.
Akbarzadeh
,
Physica B
324
,
305
(
2002
);
A.
Mokhtari
and
H.
Akbarzadeh
,
Physica B
337
,
122
(
2003
).
9.
M. D.
Segall
,
P. L. D.
Lindan
,
M. J.
Probert
,
C. J.
Pickard
,
P. J.
Hasnip
,
S. J.
Clark
, and
M. C.
Payne
,
J. Phys.: Condens. Matter
14
,
2717
(
2002
).
10.
Huiyang
Gou
,
Li
Hou
,
Jingwu
Zhang
,
Guifang
Sun
,
Lihua
Gao
, and
Faming
Gao
,
Appl. Phys. Lett.
89
,
141910
(
2006
).
11.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
12.
D. R.
Hamann
,
M.
Schluter
, and
C.
Chiang
,
Phys. Rev. Lett.
43
,
1494
(
1979
).
13.
R. W. G.
Wyckoff
,
Crystal Structures
, 2nd ed. (
Krieger
,
Malabar
,
1986
), Vol.
2
, p.
51
.
14.
Gonzalo
Gutiérrez
,
Eduardo
Menéndez-Proupin
, and
Anil K.
Singh
,
J. Appl. Phys.
99
,
103504
(
2006
).
15.
M.
Born
,
Proc. Cambridge Philos. Soc.
36
,
160
(
1940
).
16.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Clarendon
,
Oxford
,
1956
), p.
89
.
17.
Z.
Wu
,
X.
Chen
,
V. V.
Struzhkin
, and
R. E.
Cohen
,
Phys. Rev. B
71
,
214103
(
2005
).
18.
R.
Hill
,
Proc. Phys. Soc. London
65
,
350
(
1952
).
19.
Vadim V.
Brazhkin
and
Russell J.
Hemley
,
Philos. Mag. A
82
,
231
(
2002
).
20.
M.
Mattesini
and
S. F.
Matar
,
Phys. Rev. B
65
,
075110
(
2002
).
21.
22.
D.
He
,
Y.
Zhao
,
L.
Daemen
,
J.
Qian
,
T. D.
Shen
, and
T. W.
Zerda
,
Appl. Phys. Lett.
81
,
643
(
2002
).
23.
Rong
Yu
,
Qian
Zhan
, and
Lutgard C.
De Jonghe
,
Angew. Chem., Int. Ed.
46
,
1136
(
2007
).
24.
W. Y.
Ching
and
Paul
Rulis
,
Phys. Rev. B
73
,
045202
(
2006
).
25.
M. Q.
Cai
,
Z.
Yin
, and
M. S.
Zhang
,
Appl. Phys. Lett.
83
,
2805
(
2003
).
You do not currently have access to this content.