Zinc oxide bicrystal nanobelts were fabricated via a vapor phase transport of a powder mixture of Zn, BiI3, and MnCl2H2O at temperatures as low as 300°C. The bicrystal nanobelts, growing along the [0113] direction, have the widths of 40150nm and lengths of tens of microns. The energy dispersive x-ray spectroscopy result verifies that the bicrystal nanobelts contain higher concentration of both Bi and Mn along the grain boundary. The investigation of the growth mechanism proposes that MnBi may induce the formation of bicrystal nanobelts. Photoluminescence spectra show that the ultraviolet emission of the bicrystal nanobelts has a blueshift of 18meV as compared to Bi–ZnO nanowires at 10K. The bicrystal nanobelts also exhibit ferromagnetism at room temperature.

1.
A. D.
Mashtakov
,
K. I.
Konstantinyan
,
G. A.
Ovsyannikov
, and
E. A.
Stephantsov
,
Tech. Phys. Lett.
25
,
249
(
1999
).
2.
N. D.
Mathur
,
G.
Burnell
,
S. P.
Isaac
,
T. J.
Jackson
,
B. S.
Teo
,
J. L.
MacManus-Driscoll
,
L. F.
Cohen
,
J. E.
Evetts
, and
M. G.
Blamire
,
Nature (London)
387
,
266
(
1997
).
3.
B. M.
Ataev
,
I. K.
Kamilov
,
V. V.
Mamedov
,
A. M.
Bagamadova
, and
S. S.
Makhmudov
,
J. Phys. D
34
,
L46
(
2001
).
4.
Z. L.
Wang
,
X. Y.
Kong
, and
J. M.
Zuo
,
Phys. Rev. Lett.
91
,
185502
(
2003
).
5.
Y.
Dai
,
Y.
Zhang
,
Y. Q.
Bai
, and
Z. L.
Wang
,
Chem. Phys. Lett.
275
,
96
(
2003
).
6.
K.
Zou
,
X.
Qi
,
X.
Duan
,
S.
Zhou
, and
X.
Zhang
,
Appl. Phys. Lett.
86
,
013103
(
2005
).
7.
C.
Xu
,
K.
Rho
,
J.
Chun
, and
D.
Kim
,
Appl. Phys. Lett.
87
,
253104
(
2005
).
8.
T.
Dietl
,
H.
Ohno
,
F.
Matsukura
,
J.
Cibert
, and
D.
Ferrand
,
Science
287
,
1019
(
2000
).
9.
K.
Sato
and
H.
Yoshida
,
Jpn. J. Appl. Phys., Part 2
40
,
L334
(
2001
).
10.
Y.
Xu
,
B.
Liu
, and
D. G.
Pettifor
,
Phys. Rev. B
66
,
184435
(
2002
).
11.
S. J.
Han
,
T. H.
Jang
,
Y. B.
Kim
,
B. G.
Park
,
J. H.
Park
, and
Y. H.
Jeong
,
Appl. Phys. Lett.
83
,
920
(
2003
).
12.
P.
Sharma
,
K. V.
Rao
,
F. J.
Owens
,
R.
Sharma
,
R.
Ahuja
,
J. M. O.
Guillen
,
B.
Johansson
, and
G. A.
Gehring
,
Nat. Mater.
2
,
673
(
2003
).
13.
P. R.
Bandaru
,
T. D.
Sands
,
D.
Weller
, and
E. E.
Marinero
,
J. Appl. Phys.
86
,
1596
(
1999
).
14.
K.
Kang
,
L. H.
Lewis
, and
A. R.
Moodenbaugh
,
J. Appl. Phys.
97
,
10K302
(
2005
).
15.
Powder Diffraction Files, JCPDS., Philadelphia, PA, Card No. 36-1451 (
1967
).
16.
X. T.
Zhang
,
Y. C.
Liu
,
J. Y.
Zhang
,
Y. M.
Lu
,
D. Z.
Shen
,
X. W.
Fan
, and
X. G.
Kong
,
J. Cryst. Growth
254
,
80
(
2003
).
17.
J. J.
Wu
,
H. I.
Wen
,
C. H.
Tseng
, and
S. C.
Liu
,
Adv. Funct. Mater.
14
,
806
(
2004
).
18.
Y. C.
Kong
,
D. P.
Yu
,
B.
Zhang
,
W.
Fang
, and
S. Q.
Feng
,
Appl. Phys. Lett.
78
,
407
(
2001
).
19.
C. K.
Xu
,
S.
Chung
,
M.
Kim
, and
D. E.
Kim
,
Nanotechnology
16
,
2104
(
2005
).
20.
J. M.
Baik
and
J. L.
Lee
,
Adv. Mater. (Weinheim, Ger.)
17
,
2745
(
2005
).
21.
C. K.
Xu
,
S.
Chung
,
M.
Kim
,
D. E.
Kim
,
B.
Chon
,
S.
Hong
, and
T.
Joo
,
J. Nanosci. Nanotechnol.
5
,
530
(
2005
).
22.
A. Ferreira
Da Silva
,
C. Moysés
Araujo
,
B. E.
Sernelius
, and
C.
Persson
,
J. Phys.: Condens. Matter
13
,
8891
(
2001
).
You do not currently have access to this content.