This letter reports a simple approach to significantly improve the performance of 340nm ultraviolet light emitting diodes (UV-LEDs) on an AlN buffer layer. Greatly improved optical and electrical properties of the 340nm UV-LED have been achieved by using a very thin GaN interlayer (1020nm), deposited on AlN as a buffer layer directly on sapphire prior to growth of the UV-LED structure. Compared with the UV-LED without the thin GaN interlayer, the output power of the LED with it is increased by a factor of 2.2, and the applied bias voltage at 20mA drops from 6.5to5V. High resolution transmission electron observation indicates that the thin GaN interlayer can effectively stop the penetration of the dislocations in the AlN buffer layer into the overlaying AlGaN layer, while most of the dislocations in the AlN buffer layer in the UV-LED without the thin GaN interlayer can propagate into the overlying AlGaN layer. Therefore, the enhanced performance of the 340nm UV-LEDs results from a massive reduction in dislocation density in the overlying device structure due to the very thin GaN interlayer. Since it is extremely difficult to reduce the dislocation density in an AlN layer on sapphire, the simple and reliable approach reported in this letter provides a good alternative option to prevent the propagation of dislocations from an AlN buffer into an overlying device structure.

1.
J. P.
Zhang
,
M. A.
Khan
,
W. H.
Sun
,
H. M.
Wang
,
C. Q.
Chen
,
Q.
Fareed
,
E.
Kuokstis
, and
J. W.
Yang
,
Appl. Phys. Lett.
81
,
4392
(
2002
).
2.
T. M.
Katona
,
P.
Cantu
,
S.
Keller
,
Y.
Wu
,
J. S.
Speck
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
84
,
5025
(
2004
).
3.
S.
Heikman
,
S.
Keller
,
S.
Newman
,
Y.
Wu
,
C.
Moe
,
B.
Moran
,
M.
Schmidt
,
U. K.
Mishra
,
J. S.
Speck
, and
S. P.
DenBaars
,
Jpn. J. Appl. Phys., Part 2
44
,
L405
(
2005
).
4.
T.
Wang
,
J.
Bai
,
P. J.
Parbrook
, and
A. G.
Cullis
,
Appl. Phys. Lett.
87
,
151906
(
2005
).
5.
H.
Amano
,
The 2005 Annual Conference of the British Association for Crystal Growth: Symposium A, B2
,
Sheffield, UK
, 4–6 September
2005
, pp.
230
233
.
6.
R. S.
Qhalid Fareed
,
V.
Adivarahan
,
C. Q.
Chen
,
S.
Rai
,
E.
Kuokstis
,
J. W.
Yang
,
M.
Asif Khan
,
J.
Caissie
, and
R. J.
Molnar
,
Appl. Phys. Lett.
84
,
696
(
2004
).
7.
J.
Bai
,
T.
Wang
,
P. J.
Parbrook
, and
A. G.
Cullis
,
J. Cryst. Growth
282
,
290
(
2005
).
8.
J.
Bai
,
T.
Wang
,
P.
Comming
,
P. J.
Parbrook
,
J. P. R.
David
, and
A. G.
Cullis
,
J. Appl. Phys.
99
,
023513
(
2006
).
9.
H.
Lee
,
I.-H.
Choi
,
C. R.
Lee
, and
S. K.
Noh
,
Appl. Phys. Lett.
71
,
1359
(
1997
).
10.
J.
Bai
,
T.
Wang
,
I. M.
Ross
,
P. J.
Parbrook
, and
A. G.
Cullis
,
J. Cryst. Growth
289
,
63
(
2006
).
11.
A.
Hanlon
,
P. M.
Pattison
,
J. F.
Kaeding
,
R.
Sharma
,
P.
Fini
, and
S.
Nakamura
,
Jpn. J. Appl. Phys., Part 2
42
,
L628
(
2003
).
12.
T.
Shibata
,
K.
Asai
,
S.
Sumiya
,
M.
Mouri
,
M.
Tanaka
,
O.
Oda
,
H.
Katsukawa
,
H.
Miyake
, and
K.
Hiramatsu
,
Phys. Status Solidi C
0
,
2023
(
2003
).
13.
Q.
Paduano
and
D.
Weyburne
,
Jpn. J. Appl. Phys., Part 1
42
,
1590
(
2003
).
You do not currently have access to this content.