In this contribution, the radiation tolerance of single ZnO nanowire field-effect transistors (NW-FETs) fabricated with a self-assembled superlattice (SAS) gate insulator is investigated and compared with that of ZnO NW-FETs fabricated with a 60nmSiO2 gate insulator. A total-radiation dose study was performed using 10MeV protons at doses of 5.71 and 285krad(Si). The threshold voltage (Vth) of the SAS-based ZnO NW-FETs is not shifted significantly following irradiation at these doses. In contrast, Vth parameters of the SiO2-based ZnO NW-FETs display average shifts of 4.0 and 10.9V for 5.71 and 285krad(Si)H+ irradiation, respectively. In addition, little change is observed in the subthreshold characteristics (off current, subthreshold slope) of the SAS-based ZnO NW-FETs following H+ irradiation. These results strongly argue that the bulk oxide trap density and interface trap density formed within the SAS and/or at the SAS-ZnO NW interface during H+ irradiation are significantly lower than those for the corresponding SiO2 gate dielectrics. The radiation-robust SAS-based ZnO NW-FETs are thus promising candidates for future space-based applications in electronics and flexible displays.

1.
T. R.
Oldham
and
F. B.
McLean
,
IEEE Trans. Nucl. Sci.
50
,
483
(
2003
).
2.
H. L.
Hughes
and
J. M.
Benedetto
,
IEEE Trans. Nucl. Sci.
50
,
500
(
2003
).
3.
P. K. H.
Ho
,
D. S.
Thomas
, and
H.
Sirringhaus
,
Science
299
,
1881
(
2003
).
4.
H. E. A.
Huitema
,
G. H.
Gelinck
,
J. B. P. H.
van der Putten
,
K. E.
Kuijk
,
C. M.
Hart
,
E.
Cantatore
,
P. T.
Herwig
,
A. J. J. M.
van Breemen
, and
D. M.
de Leeuw
,
Nature (London)
414
,
599
(
2001
).
5.
D.
Whang
,
S.
Jin
, and
C. M.
Lieber
,
Jpn. J. Appl. Phys., Part 1
43
,
4465
(
2004
).
6.
M.-H.
Yoon
,
A.
Facchetti
, and
T. J.
Marks
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
4678
(
2005
).
7.
S.-H.
Hur
,
M.-H.
Yoon
,
A.
Gaur
,
A.
Facchetti
,
T. J.
Marks
, and
J. A.
Rogers
,
J. Am. Chem. Soc.
127
,
13808
(
2005
).
8.
S.
Ju
,
K.
Lee
,
D. B.
Janes
,
M.-H.
Yoon
,
A.
Facchetti
, and
T. J.
Marks
,
Nano Lett.
5
,
2281
(
2005
).
9.
J. A.
Rodriguez
,
T.
Jirsak
,
S.
Sambasivan
,
D.
Fischer
, and
A.
Maiti
,
J. Chem. Phys.
112
,
9929
(
2000
).
10.
K.
Hara
,
T.
Horiguchi
,
T.
Kinoshita
,
K.
Sayama
,
H.
Sugihara
, and
H.
Arakawa
,
Sol. Energy Mater. Sol. Cells
64
,
115
(
2000
).
11.
E. G.
Stassinopoulos
and
J. P.
Raymond
,
Proc. IEEE
76
,
1423
(
1988
).
12.
E.
Simoen
,
A.
Mercha
,
A.
Morata
,
K.
Hayama
,
G.
Richardson
,
J. M.
Rafi
,
E.
Augendre
,
C.
Claeys
,
A.
Mohammadzadeh
,
H.
Ohyama
, and
A.
Romano-Rodriguez
,
IEEE Trans. Nucl. Sci.
50
,
2426
(
2003
).
13.
P.
Paillet
,
J. R.
Schwank
,
M. R.
Shaneyfelt
,
V.
Ferlet-Cavros
,
R. L.
Jones
,
O.
Flament
, and
E. W.
Blackmore
,
IEEE Trans. Nucl. Sci.
49
,
2656
(
2002
).
14.
D. M.
Feetwood
,
T. L.
Meisenheimer
, and
J. H.
Schfield
,
IEEE Trans. Electron Devices
50
,
483
(
2003
).
You do not currently have access to this content.