Three-dimensional (3D) profiles of single nanotracks generated by a low impact density of Cl ions at have been determined by optical methods, using an effective-medium approach. The buried location of the maximum stopping power induces a surface optical waveguiding layer even at ultralow fluences that allows to obtain the effective refractive index profiles (from dark-mode measurements). Combining the optical information with Rutherford backscattering spectroscopy/channeling experiments, the existence of a surrounding defective halo around the amorphous track core has been ascertained. The 3D profile of the halo has also been determined.
REFERENCES
1.
R.
Spohr
, in Ion Tracks and Microtechnology: Basic Principles and Applications
, edited by K.
Bethge
(Vieweg
, Braunchsweig
, 1990
).2.
P.
Hansen
and H.
Heitmann
, Phys. Rev. Lett.
43
, 1444
(1979
).3.
B.
Canut
, A.
Benyagoub
, G.
Marest
, A.
Meftah
, N.
Moncoffre
, S. M. M.
Ramos
, P.
Studer
, P.
Thevenard
, and M.
Toulemonde
, Phys. Rev. B
51
, 12194
(1995
).4.
C.
Trautmann
, M.
Toulemonde
, J. M.
Constantini
, J. J.
Grob
, and K.
Schwartz
, Phys. Rev. B
62
, 13
(2000
).5.
A.
Benyagoub
, F.
Levesque
, F.
Couvreur
, C.
Gibert-Mougel
, C.
Dufour
, and E.
Paumier
, Appl. Phys. Lett.
77
, 3197
(2000
).6.
P. I.
Gaiduk
, A.
Nylansted-Larsen
, J.
Lundsgaard-Hansen
, C.
Trautmann
, and M.
Toulemonde
, Appl. Phys. Lett.
83
, 1746
(2003
).7.
M.
Toulemonde
, C.
Trautmann
, E.
Balanzat
, K.
Hjort
, and A.
Weidinger
, Nucl. Instrum. Methods Phys. Res. B
216
, 1
(2004
).8.
J.-H.
Zollondz
and A.
Weidinger
, Nucl. Instrum. Methods Phys. Res. B
225
, 178
(2004
).9.
J.
Olivares
, G.
García
, A.
García-Navarro
, F.
Agulló-López
, O.
Caballero
, and A.
García-Cabañes
, Appl. Phys. Lett.
86
, 183501
(2005
).10.
P. D.
Townsend
, P. J.
Chandler
, and L.
Zhang
, Optical Effects of Ion Implantation
(Cambrige University Press
, London
, 1994
).11.
F.
Thibaudau
, J.
Cousty
, E.
Balanzat
, and S.
Bouffard
, Phys. Rev. Lett.
67
, 1582
(1991
).12.
J.
Vetter
, R.
Scholz
, and N.
Angert
, Nucl. Instrum. Methods Phys. Res. B
91
, 129
(1994
).13.
J.
Ackermann
, N.
Angert
, R.
Neumann
, C.
Trautmann
, M.
Dischner
, T.
Hagen
, and M.
Sedlacek
, Nucl. Instrum. Methods Phys. Res. B
107
, 181
(1996
).14.
K.
Schwartz
, Nucl. Instrum. Methods Phys. Res. B
107
, 128
(1996
).15.
D.
Albrecht
, P.
Armbruster
, R.
Spohr
, M.
Roth
, K.
Schaupert
, and H.
Stuhrmann
, Appl. Phys. A: Solids Surf.
37
, 37
(1985
).17.
A.
Meftah
, J. M.
Costantini
, N.
Khalfaoui
, S.
Boudjadar
, J. P.
Soquert
, F.
Studer
, and M.
Toulemonde
, Nucl. Instrum. Methods Phys. Res. B
237
, 563
(2005
).18.
J.
Olivares
, G.
García
, F.
Agulló-López
, F.
Agulló-Rueda
, A.
Kling
, and J. C.
Soares
, Appl. Phys. A: Mater. Sci. Process.
A81
, 1465
(2005
).19.
F.
Agulló-López
, G.
García
, and J.
Olivares
, J. Appl. Phys.
97
, 093514
(2005
).20.
Handbook of Modern Ion Beam Materials Analysis
, edited by J. R.
Tesmer
and M.
Nastasi
(MRS
, Pittsburgh
, 1995
).© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.