Three-dimensional (3D) profiles of single nanotracks generated by a low impact density of Cl ions at 46MeV have been determined by optical methods, using an effective-medium approach. The buried location of the maximum stopping power induces a surface optical waveguiding layer even at ultralow fluences (10111013at.cm2) that allows to obtain the effective refractive index profiles (from dark-mode measurements). Combining the optical information with Rutherford backscattering spectroscopy/channeling experiments, the existence of a surrounding defective halo around the amorphous track core has been ascertained. The 3D profile of the halo has also been determined.

1.
R.
Spohr
, in
Ion Tracks and Microtechnology: Basic Principles and Applications
, edited by
K.
Bethge
(
Vieweg
,
Braunchsweig
,
1990
).
2.
P.
Hansen
and
H.
Heitmann
,
Phys. Rev. Lett.
43
,
1444
(
1979
).
3.
B.
Canut
,
A.
Benyagoub
,
G.
Marest
,
A.
Meftah
,
N.
Moncoffre
,
S. M. M.
Ramos
,
P.
Studer
,
P.
Thevenard
, and
M.
Toulemonde
,
Phys. Rev. B
51
,
12194
(
1995
).
4.
C.
Trautmann
,
M.
Toulemonde
,
J. M.
Constantini
,
J. J.
Grob
, and
K.
Schwartz
,
Phys. Rev. B
62
,
13
(
2000
).
5.
A.
Benyagoub
,
F.
Levesque
,
F.
Couvreur
,
C.
Gibert-Mougel
,
C.
Dufour
, and
E.
Paumier
,
Appl. Phys. Lett.
77
,
3197
(
2000
).
6.
P. I.
Gaiduk
,
A.
Nylansted-Larsen
,
J.
Lundsgaard-Hansen
,
C.
Trautmann
, and
M.
Toulemonde
,
Appl. Phys. Lett.
83
,
1746
(
2003
).
7.
M.
Toulemonde
,
C.
Trautmann
,
E.
Balanzat
,
K.
Hjort
, and
A.
Weidinger
,
Nucl. Instrum. Methods Phys. Res. B
216
,
1
(
2004
).
8.
J.-H.
Zollondz
and
A.
Weidinger
,
Nucl. Instrum. Methods Phys. Res. B
225
,
178
(
2004
).
9.
J.
Olivares
,
G.
García
,
A.
García-Navarro
,
F.
Agulló-López
,
O.
Caballero
, and
A.
García-Cabañes
,
Appl. Phys. Lett.
86
,
183501
(
2005
).
10.
P. D.
Townsend
,
P. J.
Chandler
, and
L.
Zhang
,
Optical Effects of Ion Implantation
(
Cambrige University Press
,
London
,
1994
).
11.
F.
Thibaudau
,
J.
Cousty
,
E.
Balanzat
, and
S.
Bouffard
,
Phys. Rev. Lett.
67
,
1582
(
1991
).
12.
J.
Vetter
,
R.
Scholz
, and
N.
Angert
,
Nucl. Instrum. Methods Phys. Res. B
91
,
129
(
1994
).
13.
J.
Ackermann
,
N.
Angert
,
R.
Neumann
,
C.
Trautmann
,
M.
Dischner
,
T.
Hagen
, and
M.
Sedlacek
,
Nucl. Instrum. Methods Phys. Res. B
107
,
181
(
1996
).
14.
K.
Schwartz
,
Nucl. Instrum. Methods Phys. Res. B
107
,
128
(
1996
).
15.
D.
Albrecht
,
P.
Armbruster
,
R.
Spohr
,
M.
Roth
,
K.
Schaupert
, and
H.
Stuhrmann
,
Appl. Phys. A: Solids Surf.
37
,
37
(
1985
).
17.
A.
Meftah
,
J. M.
Costantini
,
N.
Khalfaoui
,
S.
Boudjadar
,
J. P.
Soquert
,
F.
Studer
, and
M.
Toulemonde
,
Nucl. Instrum. Methods Phys. Res. B
237
,
563
(
2005
).
18.
J.
Olivares
,
G.
García
,
F.
Agulló-López
,
F.
Agulló-Rueda
,
A.
Kling
, and
J. C.
Soares
,
Appl. Phys. A: Mater. Sci. Process.
A81
,
1465
(
2005
).
19.
F.
Agulló-López
,
G.
García
, and
J.
Olivares
,
J. Appl. Phys.
97
,
093514
(
2005
).
20.
Handbook of Modern Ion Beam Materials Analysis
, edited by
J. R.
Tesmer
and
M.
Nastasi
(
MRS
,
Pittsburgh
,
1995
).
You do not currently have access to this content.