Conductive-atomic force microscopy is used to electrically characterize a nanometric metal-SiO2Si(n+) system with Au nanocluster inclusions in SiO2. The system shows a marked rectifying behavior at room temperature with a threshold voltage function of the cluster size. This behavior is interpreted crossing physical considerations on metal-oxide-semiconductor structure and on double barrier tunnel junction device. The system fabricated and analyzed is proposed as a possible basic component for nanoelectronic circuits working at room temperature.

1.
D. K.
Ferry
and
S. M.
Goodnick
,
Transport in Nanostructures
(
Cambridge University Press
, Cambridge,
1997
), Chap. 4.
2.
S.
Pal
,
M. K.
Sanyal
,
N. S.
John
, and
G. U.
Kulkarni
,
Phys. Rev. B
71
,
121404
(R) (
2005
).
3.
K. K.
Likharev
,
Proc. IEEE
87
,
606
(
1999
).
4.
A. E.
Hanna
and
M.
Tinkham
,
Phys. Rev. B
44
,
5919
(
1991
).
5.
R. P.
Andres
,
S.
Datta
,
M.
Dorogi
,
J.
Gomez
,
J. I.
Henderson
,
D. B.
Janes
,
V. R.
Kolagunta
,
C. P.
Kubiak
,
W.
Mahoney
,
R. F.
Osifchin
,
R.
Reifenberger
,
M. P.
Samanta
, and
W.
Tian
,
J. Vac. Sci. Technol. A
14
,
1178
(
1996
).
6.
L. I.
Glazman
,
J. Low Temp. Phys.
118
,
247
(
2000
).
7.
D. V.
Averin
and
A. N.
Korotkov
,
J. Low Temp. Phys.
80
,
173
(
1990
).
8.
For the calculus of Φsinv the usual MOS theory is used, as reported, for example, by
A. S.
Groove
,
Physics and Technology of Semiconductor Devices
(
Wiley
,
New York
,
1967
), Chap. 9.
9.
D.
Sarid
,
Exploring Scanning Probe Microscopy with Mathematica
(
Wiley
,
New York
,
1997
), p.
236
.
You do not currently have access to this content.