Cubic InN layers were grown by plasma assisted molecular beam epitaxy on 3C-SiC (001) substrates at growth temperatures from 419to490°C. X-ray diffraction investigations show that the layers have zinc blende structure with only a small fraction of wurtzite phase inclusions on the (111) facets of the cubic layer. The full width at half maximum of the c-InN (002) x-ray rocking curve is less than 50arcmin. The lattice constant is 5.01±0.01Å. Low temperature photoluminescence measurements yield a c-InN band gap of 0.61eV. At room temperature the band gap is about 0.56eV and the free electron concentration is about n1.7×1019cm3.

1.
B. E.
Fortz
,
S. K.
O’Leary
,
M. S.
Shur
, and
L. F.
Eastman
,
J. Appl. Phys.
85
,
7727
(
1999
).
2.
S. K.
Pugh
,
D. J.
Dugdale
,
S.
Brand
, and
R. A.
Abram
,
Semicond. Sci. Technol.
14
,
23
(
1999
).
3.
C.
Trager-Cowan
,
Phys. Status Solidi C
2
,
2240
(
2005
).
4.
V. Yu.
Davydov
,
A. A.
Klochikhin
,
R. P.
Seisyan
,
V. V.
Emtsev
,
S. V.
Ivanov
,
F.
Bechstedt
,
J.
Furthmüller
,
H.
Harima
,
A. V.
Mudryi
,
J.
Aderhold
,
O.
Semchinova
, and
J.
Graul
,
Phys. Status Solidi B
229
,
R1
(
2005
).
5.
C. S.
Gallinat
,
G.
Koblmüller
,
J. S.
Brown
,
S.
Bernardis
, and
J. S.
Speck
,
Appl. Phys. Lett.
89
,
032109
(
2006
).
6.
S. P.
Fu
,
T. T.
Chen
, and
Y. F.
Chen
,
Semicond. Sci. Technol.
21
,
244
(
2006
).
7.
W.
Walukiewicz
,
J. W.
Ager
 III
,
K. M.
Yu
,
Z.
Liliental-Weber
,
J.
Wu
,
S. X.
Li
,
R. E.
Jones
, and
J. D.
Denlinger
,
J. Phys. D
39
,
R83
(
2006
).
8.
F.
Bechstedt
,
J.
Furthmüller
,
M.
Ferhat
,
L. K.
Teles
,
L. M. R.
Scolfaro
,
J. R.
Leite
,
V. Yu.
Davydov
,
O.
Ambacher
, and
R.
Goldhahn
,
Phys. Status Solidi A
195
,
628
(
2003
).
9.
D. J.
As
, in
Optoelectronic Properties of Semiconductor and Superlattices
, edited by
M. O.
Manasreh
(
Taylor & Francis
,
New York
,
2003
), Vol.
19
, Chap. 9, pp.
323
450
.
10.
D. J.
As
,
S.
Potthast
,
J.
Schörmann
,
S. F.
Li
,
K.
Lischka
,
H.
Nagasawa
, and
M.
Abe
,
Mater. Sci. Forum
527–529
,
1489
(
2006
).
11.
D.
Bagayoko
,
L.
Franklin
, and
G. L.
Zhao
,
J. Appl. Phys.
96
,
4297
(
2004
).
12.
K.
Nishida
,
Y.
Kitamura
,
Y.
Hijikata
,
H.
Yaguchi
, and
S.
Yoshida
,
Phys. Status Solidi B
241
,
2839
(
2004
).
13.
T.
Nakamura
,
K.
Iida
,
R.
Katayama
,
T.
Yamamoto
, and
K.
Onabe
,
Phys. Status Solidi B
243
,
1451
(
2006
).
14.
V. Y.
Davydov
,
A. A.
Klochikhin
,
V. V.
Emtsev
,
D. A.
Kurdykov
,
S. V.
Ivanov
,
V. A.
Vekshin
,
F.
Bechstedt
,
J.
Furthmüller
,
J.
Aderhold
,
J.
Graul
,
A. V.
Mudryi
,
H.
Harima
,
A.
Hashimoto
,
A.
Yamamoto
, and
E. E.
Haller
,
Phys. Status Solidi B
234
,
787
(
2002
).
15.
W.
Walukiewicz
,
Physica E (Amsterdam)
20
,
300
(
2004
).
16.
R.
Goldhahn
,
J.
Scheiner
,
S.
Shokhovets
,
T.
Frey
,
U.
Köhler
,
D. J.
As
, and
K.
Lischka
,
Appl. Phys. Lett.
76
,
291
(
2000
).
17.
R.
Goldhahn
,
P.
Schley
,
A. T.
Winzer
,
G.
Gobsch
,
V.
Cimalla
,
O.
Ambacher
,
M.
Rakel
,
C.
Cobet
,
N.
Esser
,
H.
Lu
, and
W. J.
Schaff
,
Phys. Status Solidi A
203
,
42
(
2006
).
18.
I.
Vurgaftman
and
J. R.
Meyer
,
J. Appl. Phys.
94
,
3675
(
2003
).
You do not currently have access to this content.