The authors introduce an emergent method to fabricate a few-nanometer-size columnar superlattice with a checkerboard pattern in inorganic spinels by harnessing the Jahn-Teller structural distortion. Transmission electron microscope images reveal that the fundamental building blocks are two types of long nanorods with the 4×4×70nm3 size, which are alternatively stacked in a way that the cross sectional and side views show checkerboard and herringbone patterns, respectively. The authors discuss that the strain induced by the Jahn-Teller distortion causes this peculiar self-assembled nanostructure in the coherent mixture of two spinel phases. This pure solid state self-assembly can be implemented to fabricate heterogeneous nanostructures with practical functionalities.

1.
S.
Sun
,
C. B.
Murray
,
D.
Weller
,
L.
Folks
, and
A.
Moser
,
Science
287
,
1989
(
2000
).
2.
F. X.
Redl
,
K.-S.
Cho
,
C. B.
Murray
, and
S.
O’Brien
,
Nature (London)
423
,
968
(
2003
).
3.
Y.
Lin
,
A.
Böker
,
J.
He
,
K.
Sill
,
H.
Xiang
,
C.
Abetz
,
X.
Li
,
J.
Wang
,
T.
Emrick
,
S.
Long
,
Q.
Wang
,
A.
Balazs
, and
T. P.
Russell
,
Nature (London)
434
,
55
(
2005
).
4.
Z. L.
Xiao
,
C. Y.
Han
,
U.
Welp
,
H. H.
Wang
,
W. K.
Kwok
,
G. A.
Willing
,
J. M.
Hiller
,
R. E.
Cook
,
D. J.
Miller
, and
G. W.
Crabtree
,
Nano Lett.
2
,
1293
(
2002
).
5.
See, for example,
A. G.
Khachaturyan
,
Theory of Structural Transformations in Solids
(
Wiley
,
New York
,
1983
), Chap. 10, pp.
315
367
.
6.
Y.
Le Bouar
,
A.
Loiseau
, and
A. G.
Khachaturyan
,
Acta Mater.
46
,
2777
(
1998
).
7.
A.
Suzuki
and
M.
Takeyama
,
J. Mater. Res.
21
,
21
(
2006
).
8.
H.
Zheng
,
J.
Wang
,
S. E.
Lofland
,
Z.
Ma
,
L.
Mohaddes-Ardabili
,
T.
Zhao
,
L.
Salamanca-Riba
,
S. R.
Shinde
,
S. B.
Ogale
,
F.
Bai
,
D.
Viehland
,
Y.
Jia
,
D. G.
Schlom
,
M.
Wuttig
,
A.
Roytburd
, and
R.
Ramesh.
,
Science
303
,
661
(
2004
).
9.
D.
Louca
,
T.
Egami
,
E. L.
Brosha
,
H.
Roder
, and
A. R.
Bishop
,
Phys. Rev. B
56
,
R8475
(
1997
).
10.
E.
Dagotto
,
Science
309
,
257
(
2005
).
11.
P.
Littlewood
,
Nature (London)
399
,
529
(
1999
).
12.
M. A.
Ivanov
,
N. K.
Tkachev
, and
A. Ya.
Fishman
,
Low Temp. Phys.
28
,
613
(
2002
).
13.
M. A.
Ivanov
,
N. K.
Tkachev
, and
A. Ya.
Fishman
,
Low Temp. Phys.
25
,
459
(
1999
).
14.
M.
Grenot
and
M.
Huber
,
J. Phys. Chem. Solids
28
,
2441
(
1967
).
15.
B.
Mansour
,
N.
Baffier
, and
M.
Huber
,
Sciences Chimiques
277
,
867
(
1973
).
16.
A. L.
Roytburd
,
Sov. Phys. Solid State
10
,
2870
(
1969
).
17.
T. B.
Massalski
,
W. A.
Soffa
, and
D. E.
Laughlin
,
Metall. Mater. Trans. A
37A
,
825
(
2006
).
18.
Y.
Bessekhouad
and
M.
Trari
,
Int. J. Hydrogen Energy
27
,
357
(
2002
).
19.
S. K.
Sampath
,
D. G.
Kanhere
, and
R.
Pandey
,
J. Phys.: Condens. Matter
11
,
3635
(
1999
).
20.
W.
Zhu
,
G. P.
Kochanski
, and
S.
Jin
,
Science
282
,
1471
(
1998
).
21.
A. P.
Alivisatos
,
Science
271
,
933
(
1996
).
22.
X.
Duan
and
C. M.
Lieber
,
Adv. Mater. (Weinheim, Ger.)
12
,
298
(
2000
).
You do not currently have access to this content.