The authors consider electron heating in the sheath regions of capacitive discharges excited by a combination of two frequencies, one much higher than the other. There is a common supposition that in such discharges the higher frequency is the dominant source of electron heating. In this letter, the authors discuss closed analytic expressions quantifying the Ohmic and collisionless electron heating in a dual frequency discharge. In both cases, the authors show that the lower frequency parameters strongly influence the heating effect. Moreover, this influence is parametrically different, so that the dominant heating mechanism may be changed by varying the low frequency current density.

1.
H. H.
Goto
,
H. D.
Lowe
, and
T.
Ohmi
,
IEEE Trans. Semicond. Manuf.
6
,
58
(
1993
).
2.
J.
Robiche
,
P. C.
Boyle
,
M. M.
Turner
, and
A. R.
Ellingboe
,
J. Phys. D
36
,
1810
(
2003
).
3.
H. C.
Kim
,
J. K.
Lee
, and
J. W.
Shon
,
Phys. Plasmas
10
,
4545
(
2003
).
4.
P. C.
Boyle
,
A. R.
Ellingboe
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
13
,
493
(
2004
).
5.
H. C.
Kim
and
J. K.
Lee
,
Phys. Rev. Lett.
93
,
085003
(
2004
).
6.
M. M.
Turner
and
P.
Chabert
,
Phys. Rev. Lett.
96
,
205001
(
2006
).
7.
E.
Kawamura
,
M. A.
Lieberman
, and
A. J.
Lichtenberg
,
Phys. Plasmas
13
,
053506
(
2006
).
8.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
,
New York
,
1994
), Chap. 11, p.
344
345
.
9.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
16
,
638
(
1988
).
You do not currently have access to this content.