Single-phase Er2SiO5 nanocrystal aggregates were produced on a large scale using Si nanowire (Si-NW) arrays as templates. A dense array of Si-NWs was grown by vapor-liquid-solid mechanism using Au catalyst on Si (111) substrate. Afterwards, ErCl36H2O dissolved ethanol solution was spin coated and annealed first at 900°C for 4min in a flowing N2O2 environment and then at 1200°C in a flowing Ar environment for 3min. X-ray diffraction, scanning electron microscope, and high-resolution transmission electron microscope measurements indicate that due to the use of Si-NWs, such a short annealing procedure is sufficient to completely transform the Er-coated Si-NWs into a thick, large-area aggregate of pure, single-phase to Er2SiO5 oxyorthosilicate nanocrystals. The crystalline nature of Er2SiO5 film and the loose nature of the aggregate result in an atomlike Er3+ spectrum with a very narrow luminescence linewidth at 1.53μm, which together with a complete lack of temperature quenching of Er3+ luminescence and a high Er concentration indicate a viability of this method to fabricate efficient, high-gain Si-based optical material for Si photonics.

1.
See, for example,
Towards the First Silicon Laser
,
NATO Science Series II: Mathematics, Physics and Chemistry
(
Springer
,
New York
,
2003
), p.
93
.
2.
A. J.
Kenyon
,
Semicond. Sci. Technol.
20
,
R65
(
2005
).
3.
M. A.
Green
,
J. H.
Zhao
,
A. H.
Wang
,
P. J.
Reece
, and
M.
Gal
,
Nature (London)
412
,
805
(
2001
).
4.
L.
Pavesi
,
L.
Dal Negro
,
C.
Mazzoleni
,
G.
Franzó
, and
F.
Priolo
,
Nature (London)
408
,
440
(
2000
).
5.
H. S.
Rong
,
R.
Jones
,
A. S.
Liu
,
O.
Cohen
,
D.
Hak
,
A.
Fang
, and
M.
Paniccia
,
Nature (London)
433
,
725
(
2005
).
6.
Q. F.
Xu
,
B.
Schmidt
,
S.
Pradhan
, and
M.
Lipson
,
Nature (London)
435
,
325
(
2005
).
7.
Condensed-Matter and Materials Physics: Basic Research for Tomorrow’s Technology
(
National Academic
,
Washington
,
1999
).
8.
E.
Snoeks
,
G. N.
van den Hoven
, and
A.
Polman
,
J. Appl. Phys.
73
,
8179
(
1993
).
9.
P. C.
Becker
,
N. A.
Olsson
, and
J. R.
Simpson
,
Erbium-Doped Fiber Amplifiers: Fundamentals and Technology
(
Academic
,
San Diego, CA
,
1999
), Vol.
433
, pp.
161
197
.
10.
G. N.
van den Hoven
,
E.
Snoeks
,
A.
Polman
,
J. W. M.
van Uffelen
,
Y. S.
Oei
, and
M. K.
Smit
,
Appl. Phys. Lett.
62
,
3065
(
1993
).
11.
J.
Felsche
,
Struct. Bonding (Berlin)
13
,
99
(
1973
).
12.
Wenxue
Li
,
Haifeng
Pan
,
Liang’en
Ding
,
Heping
Zeng
,
Guangjun
Zhao
,
Chengfeng
Yan
,
Liangbi
Su
, and
Jun
Xu
,
Opt. Express
14
,
686
(
2005
).
13.
X. X.
Wang
,
J. G.
Zhang
,
B. W.
Cheng
,
J. Z.
Yu
, and
Q. M.
Wang
,
J. Cryst. Growth
289
,
178
(
2006
).
14.
R. S.
Wagner
and
W. C.
Ellis
,
Appl. Phys. Lett.
4
,
89
(
1964
).
15.
F. F.
Lang
,
S. C.
Singhal
, and
R. C.
Kuznicki
,
J. Am. Ceram. Soc.
60
,
249
(
1977
).
16.
S.
Saini
,
K.
Chen
,
X.
Duan
,
J.
Michel
,
L. C.
Kimerling
, and
M.
Lipson
,
J. Electron. Mater.
33
,
809
(
2004
).
17.
A. M.
Dorofeev
,
N. V.
Gaponenko
,
V. P.
Bondarenko
,
E. E.
Bachilo
,
N. M.
Kazuchits
,
A. A.
Leshok
,
G. N.
Troyanova
,
V. E.
Borisenko
,
H.
Gnaser
,
W.
Bock
,
P.
Becker
, and
H.
Oechsner
,
J. Appl. Phys.
77
,
2679
(
1995
).
18.
H. A.
Lopez
and
P. M.
Fauchet
,
Appl. Phys. Lett.
77
,
3704
(
2000
).
19.
Kiseok
Suh
,
J. H.
Shin
,
O.-H.
Park
,
B.-S.
Bae
,
J.-C.
Lee
, and
H.-J.
Choi
,
Appl. Phys. Lett.
86
,
053101
(
2005
).
20.
L. H.
Slooff
,
M. J. A.
de Dood
,
A.
van Blaaderen
, and
A.
Polman
,
Appl. Phys. Lett.
76
,
3682
(
2000
).
21.
N. A.
Toropov
,
F.
Ya. Galakhov
, and
S. F.
Konovalova
,
Russ. Chem. Bull.
10
,
1271
(
1961
).
22.
C. A.
Barrios
and
M.
Lipson
,
Opt. Express
13
,
10092
(
2005
).
23.
H.
Isshiki
,
M. J. A.
de Dood
,
A.
Polman
, and
T.
Kimura
,
Appl. Phys. Lett.
85
,
4343
(
2004
).
You do not currently have access to this content.