A micromachined surface stress sensor based on a thin suspended crystalline silicon circular plate measures differential surface stress changes associated with vapor phase chemisorption of an alkanethiol self-assembled monolayer. The isolated face of the suspended silicon plate serves as the sensing surface treated with a receptor layer sensitive to a target molecule, in this case Au(111). Chemisorption of an alkanethiol on the gold coated silicon surfaces results in plate bending. Plate displacements, measured with a phase scanning interferometer, indicate a differential surface stress change Δσs=0.72±0.02Nm1 for 1-dodecanethiol.

2.
D.
Sander
,
Curr. Opin. Solid State Mater. Sci.
7
,
51
(
2003
).
3.
J.
Cahn
and
R.
Hanneman
,
Surf. Sci.
1
,
387
(
1964
).
4.
L.
Jaeckel
,
G.
Láng
, and
K.
Heusler
,
Electrochim. Acta
39
,
1031
(
1994
).
5.
R. W.
Hoffman
, in
Physics of Thin Films
, edited by
G.
Hass
and
R. E.
Thun
(
Academic
,
New York
,
1966
), Vol.
3
, pp.
211
.
6.
A.
Moulin
,
S.
O’Shea
,
R.
Badley
,
P.
Doyle
, and
M.
Welland
,
Langmuir
15
,
8776
(
1999
).
7.
G.
Wu
,
R.
Dat
,
K.
Hansen
,
T.
Thundat
,
R.
Cote
, and
A.
Majumdar
,
Nat. Biotechnol.
19
,
856
(
2001
).
8.
J.
Pei
,
F.
Tian
, and
T.
Thundat
,
Anal. Chem.
76
,
292
(
2004
).
9.
H.-J.
Butt
,
J. Colloid Interface Sci.
180
,
251
(
1996
).
10.
R.
Berger
,
E.
Delamarche
,
H.
Lang
,
C.
Gerber
,
J.
Gimzewski
,
E.
Meyer
, and
H.-J.
Güntherodt
,
Science
276
,
2021
(
1997
).
11.
R.
Raiteri
,
H.-J.
Butt
, and
M.
Grattarola
,
Scanning Microsc.
12
,
243
(
1998
).
12.
M.
Godin
,
P.
Williams
,
V.
Tabard-Cossa
,
O.
Laroche
,
L.
Beaulieu
,
R.
Lennox
, and
P.
Grütter
,
Langmuir
20
,
7090
(
2004
).
13.
K.
Marx
,
Biomacromolecules
4
,
1099
(
2003
).
14.
T.
Thundat
,
E.
Wachter
,
S.
Sharp
, and
R.
Warmack
,
Appl. Phys. Lett.
66
,
1695
(
1995
).
15.
B.
Ilic
,
D.
Czaplewski
,
H.
Craighead
,
P.
Neuzil
,
C.
Campagnolo
, and
C.
Batt
,
Appl. Phys. Lett.
77
,
450
(
2000
).
16.
J.
Tamayo
,
A.
Humphris
,
A.
Malloy
, and
M.
Miles
,
Ultramicroscopy
86
,
167
(
2001
).
17.
T.
Burg
and
S.
Manalis
,
Appl. Phys. Lett.
83
,
2698
(
2003
).
18.
R.
Shuttleworth
,
Proc. Phys. Soc., London, Sect. A
63
,
444
(
1950
).
19.
P.
Couchman
,
W.
Jesser
, and
D.
Kuhlmann-Wilsdorf
,
Surf. Sci.
33
,
429
(
1972
).
20.
S.
Timoshenko
,
Theory of Plates and Shells
(
McGraw-Hill
,
New York
,
1959
), p.
333
.
21.

For all devices tested, (a) nominal plate thickness t=2μm, (b) t=d400, and (c) wmt5. Szilard (Ref. 23) recommends t10wmt5.

22.

Defined as tension for σs>0 and compression for σs<0.

23.
R.
Szilard
,
Theory and Analysis of Plates: Classical and Numerical Methods
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1974
), p.
28
.
24.
S. P.
Timoshenko
and
J. N.
Goodier
,
Theory of Elasticity
, 3rd ed. (
McGraw-Hill
,
New York
,
1970
),
39
.
25.

Average residual stress of TiAu(8nm30nm) layers measured (FLX-2320-S, Toho Technology Corp.) in separate experiments on 100mm diameter silicon wafers (average of five measurements) with average compressive stress of 181MNm2.

26.
R.
Szilard
,
Theory and Analysis of Plates: Classical and Numerical Methods
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1974
), p.
97
.
27.

A solution of (d3wdr3)+(1r)(d2wdr2)((σsD)+(1r2))(dwdr)p0r2D=0 with boundary conditions w=dwdr=0 at r=±a2. The variable p0 represents a uniform lateral pressure (Ref. 26) and is calculated by assuming that the initial bending is identical to the bending due to p0. The center deflection due to p0, wl(0)=p0a464D, (Ref. 26), is equated to the initial bending wi(0) resulting in wδ=p0a464D and p0=64Dwδa4. The term p0r2D is then replaced with 32wδra4.

28.

Deflection Δw=w(0)wi(0)wδ(572γ1Δσs+112304γ2Δσs2), where w(0) replaced with first three terms of series expansion. The quadratic equation is solved for Δσs.

29.
W.
Sawyer
,
M.
Prince
, and
G.
Brown
,
J. Micromech. Microeng.
15
,
1588
(
2005
).
30.
R.
Nuzzo
and
D.
Allara
,
J. Am. Chem. Soc.
105
,
4481
(
1983
).
31.
R.
Nuzzo
,
B.
Zegarski
, and
L.
Dubois
,
J. Am. Chem. Soc.
109
,
733
(
1987
).
32.
C.
Bains
,
E.
Troughton
,
Y.-T.
Tao
,
J.
Evall
,
G.
Whitesides
, and
R.
Nuzzo
,
J. Am. Chem. Soc.
111
,
321
(
1989
).
33.

Peak occurs at 2θ=37.94° corresponding to the (111) direction for Au.

34.
J.
Doscher
,
Analog Dialogue
33
,
27
(
1999
).
35.

Comparison between cantilever beam dimensions from Refs. 6–10 and plate dimensions presented here.

36.
D.
Rugar
,
H.
Mamin
, and
P.
Guethner
,
Appl. Phys. Lett.
55
,
2588
(
1989
).
37.
G.
Yaralioglu
,
A.
Atalar
,
S.
Manalis
, and
C.
Quate
,
J. Appl. Phys.
83
,
7405
(
1998
).
38.

A displacement resolution of 0.001nm reported (Ref. 36) using optical interferometry; however, a value of 0.01nm is common (Ref. 37).

You do not currently have access to this content.