GaN exists in both wurtzite and zinc-blende phases and the growths of the two on its (0001) or (111) surfaces are achieved by choosing proper deposition conditions of molecular-beam epitaxy (MBE). At low substrate temperatures but high gallium fluxes, metastable zinc-blende GaN films are obtained, whereas at high temperatures and/or using high nitrogen fluxes, equilibrium wurtzite phase GaN epilayers resulted. This dependence of crystal structure on substrate temperature and source flux is not affected by deposition rate. Rather, the initial stage nucleation kinetics plays a primary role in determining the crystallographic structures of epitaxial GaN by MBE.

1.
S.
Strite
and
H.
Morkoc
,
J. Vac. Sci. Technol. B
10
,
1237
(
1992
).
2.
A. F.
Wright
,
J. Appl. Phys.
82
,
5259
(
1997
).
3.
M.
Mizuta
,
S.
Fujida
,
Y.
Matsumoto
, and
T.
Kawamura
,
Jpn. J. Appl. Phys., Part 2
25
,
L945
(
1986
).
4.
K. H.
Ploog
,
O.
Brandt
,
H.
Yang
,
B.
Yang
, and
A.
Trampert
,
J. Vac. Sci. Technol. B
16
,
2229
(
1998
).
5.
H.
Okumura
,
K.
Ohta
,
G.
Feuillet
,
K.
Balakrishnan
,
S.
Chichibu
,
H.
Hamaguchi
,
P.
Hacke
, and
S.
Yoshida
,
J. Cryst. Growth
178
,
113
(
1997
).
6.
P.
Das
and
D. K.
Ferry
,
Solid-State Electron.
19
,
851
(
1976
).
7.
Z. Z.
Bandic
,
T. C.
MacGill
, and
Z.
Ikonic
,
Phys. Rev. B
56
,
3564
(
1997
).
8.
X. H.
Lu
,
P. Y.
Yu
,
M. H.
Xie
,
L. X.
Zheng
,
S. J.
Xu
, and
S. Y.
Tong
,
Appl. Phys. Lett.
82
,
1033
(
2003
).
9.
H.
Okumura
,
K.
Balakrishnan
,
H.
Hamaguchi
,
T.
Koizumi
,
S.
Chichibu
,
H.
Nakanishi
,
T.
Nagatomo
, and
S.
Yoshida
,
J. Cryst. Growth
189/190
,
364
(
1998
).
10.
T.
Kurobe
,
Y.
Sekiguchi
,
J.
Suda
,
M.
Yoshimoto
, and
H.
Matsunami
,
Appl. Phys. Lett.
73
,
2305
(
1998
).
11.
Y.
Zhao
,
C. W.
Tu
,
I.-T.
Bae
, and
T.-Y.
Seong
,
Appl. Phys. Lett.
74
,
3182
(
1999
).
12.
Y.
Cui
,
V. K.
Lazorov
,
M. M.
Goetz
,
H.
Liu
,
D. P.
Robertson
,
M.
Gajdardziska-Josifovska
, and
L.
Li
,
Appl. Phys. Lett.
82
,
4666
(
2003
).
13.
J. W.
Yang
,
J. N.
Kuznia
,
Q. C.
Chen
,
M.
Asif Khan
,
T.
George
,
M.
De Graef
, and
S.
Mahajan
,
Appl. Phys. Lett.
67
,
3759
(
1995
).
14.
S. M.
Seutter
,
M. H.
Xie
,
W. K.
Zhu
,
L. X.
Zheng
,
Huasheng
Wu
, and
S. Y.
Tong
,
Surf. Sci.
445
,
L71
(
2000
).
15.
A. R.
Smith
,
R. M.
Feenstra
,
D. W.
Greve
,
M.-S.
Shin
,
M.
Skowronski
,
J.
Neugebauer
, and
J. E.
Northrup
,
Appl. Phys. Lett.
72
,
2114
(
1998
).
16.
X. H.
Wu
,
D.
Kapolnek
,
E. J.
Tarsa
,
B.
Heying
,
S.
Keller
,
B. P.
Keller
,
U. K.
Mishra
,
S. P.
DenBaars
, and
J. S.
Speck
,
Appl. Phys. Lett.
68
,
1371
(
1996
).
17.
R.
Armitage
,
K.
Nishizono
,
J.
Suda
, and
T.
Kimoto
,
J. Cryst. Growth
284
,
369
(
2005
).
18.
I. V.
Markov
,
Crystal Growth for Beginners, Fundamentals of Nucleation, Crystal Growth and Epitaxy
, 2nd ed. (
World Scientific
,
Singapore
,
2003
), p.
172
.
19.
I. V.
Markov
(private communication).
20.

Due to the operational limitation of the plasma unit for N source, a wider range of growth rate variation was unfeasible.

21.
J.
Suda
,
T.
Kurobe
, and
H.
Matsunami
,
J. Cryst. Growth
201/202
,
437
(
1999
).
22.
M. H.
Xie
,
S. M.
Seutter
,
W. K.
Zhu
,
L. X.
Zheng
,
Huasheng
Wu
, and
S. Y.
Tong
,
Phys. Rev. Lett.
82
,
2749
(
1999
).
23.
M. H.
Xie
,
M.
Gong
,
E. K. Y.
Pang
,
H. S.
Wu
, and
S. Y.
Tong
,
Phys. Rev. B
74
,
085314
(
2006
).
24.
Z.
Zhang
and
H.
Metiu
,
Surf. Sci.
245
,
353
(
1991
).
You do not currently have access to this content.