The authors demonstrate here a method for three-dimensional patterning of proteins and other biological molecules. The method employs femtosecond-laser-induced three-photon polymerization, a technique which enables the construction of arbitrary two- and three-dimensional structures of submicron resolution. Biotin is subsequently attached to the three-dimensional (3D) structures via UV-activated cross-linking. The integrity of the photolytically immobilized biotin is confirmed by detecting the binding of fluorescently labeled avidin via fluorescence microscopy and via a surface acoustic sensor technique. In all, the technique opens the way for the fabrication of structures with a wide range of biomaterials as well as studying their dynamics within complex 3D structures.

1.
S.
Fodor
,
J.
Read
,
M.
Pirrung
,
L.
Stryer
,
A.
Lu
, and
D.
Solas
,
Science
251
,
767
(
1991
).
2.
L. M.
Wilde
,
G.
Farace
,
C. J.
Roberts
,
M. C.
Davies
,
G. H. W.
Sanders
,
S. J. B.
Tendler
, and
P. M.
Williams
,
Analyst (Cambridge, U.K.)
126
,
195
(
2001
).
3.
M.
Balakirev
,
S.
Porte
,
M.
Vernaz-Gris
,
M.
Berger
,
J.
Arie
,
B.
Fouque
, and
F.
Chatelain
,
Anal. Chem.
77
,
5474
(
2005
).
4.
J. T.
Groves
and
S. G.
Boxer
,
Acc. Chem. Res.
35
,
149
(
2002
).
5.
S. W. P.
Turner
,
M.
Cabodi
, and
H. G.
Craighead
,
Phys. Rev. Lett.
88
,
128103
(
2002
).
6.
B. R.
Ringeisen
,
J.
Callahan
,
P. K.
Wu
,
A.
Pique
,
B.
Spargo
,
R. A.
McGill
,
M.
Bucaro
,
H.
Kim
,
D. M.
Bubb
, and
D. B.
Chrisey
,
Langmuir
17
,
3472
(
2001
).
7.
I.
Zergioti
,
A.
Karaiskou
,
D. G.
Papazoglou
,
C.
Fotakis
,
M.
Kapsetaki
, and
D.
Kafetzopoulos
,
Appl. Phys. Lett.
86
,
163902
(
2005
).
8.
C. C.
Meek
and
P.
Pantano
,
Lab Chip
1
,
158
(
2001
).
9.
L. F.
Rozsnyai
,
D. R.
Benson
,
S. P. A.
Fodor
, and
P. G.
Schultz
,
Angew. Chem., Int. Ed. Engl.
31
,
759
(
1992
).
10.
M. A.
Holden
and
P. S.
Cremer
,
J. Am. Chem. Soc.
125
,
8074
(
2003
).
11.
H. J.
Choi
,
N. H.
Kim
,
B. H.
Chung
, and
G. H.
Seong
,
Anal. Biochem.
347
,
60
(
2005
).
12.
N. C.
Seeman
,
Nature (London)
421
,
427
(
2003
).
13.
R. J.
Narayan
,
C. M.
Jin
,
A.
Doraiswamy
,
I. N.
Mihailescu
,
M.
Jelinek
,
A.
Ovsianikov
,
B.
Chichkov
, and
D. B.
Chrisey
,
Adv. Eng. Mater.
7
,
1083
(
2005
).
14.
J.
Serbin
,
A.
Ovsianikov
, and
B.
Chichkov
,
Opt. Express
12
,
5221
(
2004
).
15.
S.
Maruo
,
O.
Nakamura
, and
S.
Kawata
,
Opt. Lett.
22
,
132
(
1997
).
16.
M.
Deubel
,
G. v.
Freymann
,
M.
Wegener
,
S.
Pereira
,
K.
Busch
, and
C. M.
Soukoulis
,
Nat. Mater.
3
,
444
(
2004
).
17.
H.-B.
Sun
,
S.
Matsuo
, and
H.
Misawaa
,
Appl. Phys. Lett.
74
,
786
(
1999
).
18.
P.
Galajda
and
P.
Ormosa
,
Appl. Phys. Lett.
78
,
249
(
2001
).
19.
H.-B.
Sun
,
K.
Takada
, and
S.
Kawata
,
Appl. Phys. Lett.
79
,
3173
(
2001
).
20.
T.
Tanaka
,
H.-B.
Sun
, and
S.
Kawata
,
Appl. Phys. Lett.
80
,
312
(
2002
).
21.
M.
Farsari
,
G.
Filippidis
, and
C.
Fotakis
,
Opt. Lett.
30
,
3180
(
2005
).
22.
A. C.
Forster
,
J. L.
McInnes
,
D. C.
Skingle
, and
R. H.
Symons
,
Nucleic Acids Res.
3
,
745
(
1985
).
23.
E.
Gizeli
,
Smart Mater. Struct.
6
,
700
(
1997
).
You do not currently have access to this content.