Triplet formation is investigated in an optically pumped polymer laser by detecting the phosphorescence emission after excitation. A clear correlation is observed between the onset of lasing and a saturation of phosphorescence intensity due to stimulated emission depletion of the singlet state and the resulting reduction in intersystem crossing. The results are consistent with intersystem crossing constituting the dominant triplet formation pathway in conjugated polymers. Excitation at different wavelengths has no effect on the triplet saturation behavior, which allows the authors to exclude singlet fission or breaking as the origin of triplet formation. The method constitutes an implementation of a highly nondegenerate excitonic switch.

1.
Yu. V.
Romanovskii
,
A.
Gerhard
,
B.
Schweitzer
,
U.
Scherf
,
R. I.
Personov
, and
H.
Bässler
,
Phys. Rev. Lett.
84
,
1027
(
2000
).
2.
J. M.
Lupton
,
A.
Pogantsch
,
T.
Piok
,
E. J. W.
List
,
S.
Patil
, and
U.
Scherf
,
Phys. Rev. Lett.
89
,
167401
(
2002
).
3.
M.
Wohlgenannt
,
W.
Graupner
,
G.
Leising
, and
Z. V.
Vardeny
,
Phys. Rev. Lett.
82
,
3344
(
1999
).
4.
M. A.
Baldo
,
D. F.
Obrien
,
Y.
You
,
A.
Shoustikov
,
S.
Sibley
,
M. E.
Thompson
, and
S. R.
Forrest
,
Nature (London)
395
,
151
(
1998
).
5.
M. D.
McGehee
and
A.
Heeger
,
Adv. Mater. (Weinheim, Ger.)
12
,
1655
(
2000
).
6.
U.
Scherf
,
S.
Riechel
,
U.
Lemmer
, and
R. F.
Mahrt
,
Curr. Opin. Solid State Mater. Sci.
5
,
143
(
2001
).
7.
N.
Tessler
,
G. J.
Denton
, and
R. H.
Friend
,
Nature (London)
382
,
695
(
1996
).
8.
F.
Hide
,
M. A.
Diaz-Garcia
,
B. J.
Schwartz
,
M. R.
Andersson
,
P.
Qibing
, and
A. J.
Heeger
,
Science
273
,
1833
(
1996
).
9.
R.
Österbacka
,
M.
Wohlgenannt
,
D.
Chinn
, and
Z. V.
Vardeny
,
Phys. Rev. B
60
,
R11253
(
1999
).
10.
B.
Kraabel
,
D.
Hulin
,
C.
Aslangul
,
C.
Lappersonne-Meyer
, and
M.
Schott
,
Chem. Phys.
277
,
83
(
1998
).
11.
B.
Kraabel
,
D.
Moses
, and
A. J.
Heeger
,
J. Chem. Phys.
103
,
5102
(
1995
).
12.
C.
Zenz
,
G.
Cerullo
,
G.
Lanzani
,
W.
Graupner
,
F.
Meghdadi
,
G.
Leising
, and
S.
De Silvestri
,
Phys. Rev. B
59
,
14336
(
1999
).
13.
G.
Cerullo
,
G.
Lanzani
,
S.
De Silvestri
,
H.-J.
Egelhaaf
,
L.
Lüer
, and
D.
Oelkrug
,
Phys. Rev. B
62
,
2429
(
2000
).
14.
J.-P.
Yang
,
W.
Paa
, and
S.
Rentsch
,
Chem. Phys. Lett.
320
,
665
(
2000
).
15.
S.
King
,
C.
Rothe
, and
A.
Monkman
,
J. Chem. Phys.
121
,
10803
(
2004
).
16.
J.
Partee
,
E. L.
Frankevich
,
B.
Uhlhorn
,
J.
Shinar
,
Y.
Ding
, and
T. J.
Barton
,
Phys. Rev. Lett.
82
,
3673
(
1999
).
17.
V.
Dyakonov
,
G.
Rösler
,
M.
Schwoerer
, and
E. L.
Frankevich
,
Phys. Rev. B
56
,
3852
(
1997
).
18.
M.
Reufer
,
M. J.
Walter
,
P. G.
Lagoudakis
,
A. B.
Hummel
,
J. S.
Kolb
,
H. G.
Roskos
,
U.
Scherf
, and
J. M.
Lupton
,
Nat. Mater.
4
,
340
(
2005
).
19.
C. C.
Gradinaru
,
J. T. M.
Kennis
,
E.
Papagiannakis
,
I. H. M.
van Stokkum
,
R. J.
Cogdell
,
G. R.
Fleming
,
R. A.
Niederman
, and
R.
van Grondelle
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
2364
(
2001
).
20.
G.
Lanzani
,
G.
Cerullo
,
M.
Zavelani-Rossi
, and
S.
De Silvestri
,
Phys. Rev. Lett.
87
,
187402
(
2001
).
21.
M.
Goossens
,
A.
Ruseckas
,
G. A.
Turnbull
, and
I. D. W.
Samuel
,
Appl. Phys. Lett.
85
,
31
(
2004
).
22.
T. A.
Klar
,
M.
Dyba
, and
S. W.
Hell
,
Appl. Phys. Lett.
78
,
393
(
2001
).
23.
A.
Haugeneder
,
M.
Neges
,
C.
Kallinger
,
W.
Spirkl
,
U.
Lemmer
,
J.
Feldmann
,
M.-C.
Amann
, and
U.
Scherf
,
J. Appl. Phys.
85
,
1124
(
1999
).
24.
F.
Schindler
,
J. M.
Lupton
,
J.
Müller
,
J.
Feldmann
, and
U.
Scherf
,
Nat. Mater.
5
,
141
(
2006
).
You do not currently have access to this content.