With continued size reduction in microelectronic devices, the boundary conductance between two materials becomes the main channel for thermal dissipation. While many efforts have been directed in studying this interfacial transport, these works have focused on the materials forming the boundary, not the boundary itself. This study focuses on the dependence of thermal boundary conductance on the properties of the region at the CrSi interface. The interfacial region of the CrSi samples is characterized with Auger electron spectroscopy depth profiling and the boundary conductance is measured with a pump-probe technique. Changes in interfacial properties are shown to significantly affect conductance.

1.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
2.
R. S. C.
Cobbold
,
Theory and Applications of Field Effect Transistors
(
Wiley
,
New York
,
1970
).
3.
L. W.
da Silva
and
M.
Kaviany
,
Int. J. Heat Mass Transfer
47
,
2417
(
2004
).
4.
G. D.
Mahan
and
L. M.
Woods
,
Phys. Rev. Lett.
80
,
4016
(
1998
).
5.
P. E.
Phelan
,
Y.
Song
,
O.
Nakabeppu
,
K.
Ito
,
K.
Hijikata
,
T.
Ohmori
, and
K.
Torikoshi
,
J. Heat Transfer
116
,
1038
(
1994
).
6.
P. E.
Phelan
,
J. Heat Transfer
120
,
37
(
1998
).
7.
G.
Chen
,
C. L.
Tien
,
X.
Wu
, and
J. S.
Smith
,
J. Heat Transfer
116
,
325
(
1994
).
8.
E.-K.
Kim
,
S.-I.
Kwun
,
S.-M.
Lee
,
H.
Seo
, and
J.-G.
Yoon
,
Appl. Phys. Lett.
76
,
3864
(
2000
).
9.
A. N.
Smith
,
J. L.
Hostetler
, and
P. M.
Norris
,
Microscale Thermophys. Eng.
4
,
51
(
2000
).
10.
R. J.
Stevens
,
A. N.
Smith
, and
P. M.
Norris
,
J. Heat Transfer
127
,
315
(
2005
).
11.
D.
Kechrakos
,
J. Phys.: Condens. Matter
3
,
1443
(
1991
).
12.
R. J.
Stevens
,
P. M.
Norris
, and
L. V.
Zhigilei
,
Proceedings of the 2004 ASME International Mechanical Engineering Congress
,
Anaheim, CA
(
ASME
,
New York
,
2004
), IMECE2004-60334.
13.
J. M.
Poate
,
K. N.
Tu
, and
J. W.
Mayer
, in
Thin Films: Interdiffusion and Reactions
, edited by
J. M.
Poate
,
K. N.
Tu
, and
J. W.
Mayer
(
Wiley
,
New York
,
1978
), p.
1
.
14.
J. O.
McCaldin
and
T. C.
McGill
,
Thin Films: Interdiffusion and Reactions
, edited by
J. M.
Poate
,
K. N.
Tu
, and
J. W.
Mayer
(
Wiley
,
New York
,
1978
), p.
69
.
15.
K. N.
Tu
and
J. W.
Mayer
,
Thin Films: Interdiffusion and Reactions
, edited by
J. M.
Poate
,
K. N.
Tu
, and
J. W.
Mayer
(
Wiley
,
New York
,
1978
), p.
359
.
16.
P. M.
Norris
,
A. P.
Caffrey
,
R. J.
Stevens
,
J. M.
Klopf
,
J. T.
McLeskey
, and
A. N.
Smith
,
Rev. Sci. Instrum.
74
,
400
(
2003
).
17.
A. N.
Smith
,
A. P.
Caffrey
,
J. M.
Klopf
, and
P. M.
Norris
,
Proceedings of the 35th National Heat Transfer Conference
,
New York
(
ASME
,
New York
,
2001
), NHTC012001-11221.
18.
R. J.
Stevens
,
A. N.
Smith
, and
P. M.
Norris
,
Rev. Sci. Instrum.
77
,
084901
(
2006
).
19.

The term “acoustic mismatch” describes two materials that have significantly different acoustic velocities; the degree of the acoustic mismatch can be easily determined by comparing the materials’ Debye temperatures, θD.

20.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
You do not currently have access to this content.