Magnetization characteristics of submicron-sized ferromagnetic rings in a one-dimensional array with various inter-ring distances, lx, were investigated by the magneto-optical Kerr effect and micromagnetic simulation. The onion (vortex)-to-vortex (onion) transition fields were found to be proportional to 1lxn with n=1.36 (0.79), instead of being a simple dipole interaction model (n=3). It was demonstrated that the transition mechanism and the inter-ring dependence are governed by the energy gain originating from the deformation of the local vortex. As a result, exchange energy as well as magnetostatic energy play important roles in the magnetization reversal of ring array.

1.
J.-G.
Zhu
,
Y.
Zheng
, and
G. A.
Prinz
,
J. Appl. Phys.
87
,
6668
(
2000
).
2.
J. K.
Ha
,
R.
Hertel
, and
J.
Kirshner
,
Phys. Rev. B
67
,
224432
(
2003
).
3.
K. J.
Kirk
,
J. N.
Chapman
,
S.
McVitie
,
P. R.
Aitchison
, and
C. D. W.
Wilkinson
,
Appl. Phys. Lett.
75
,
3683
(
1999
).
4.
T. A.
Moore
,
T. J.
Hayward
,
D. H. Y.
Tse
,
J. A. C.
Bland
,
F. J.
Castano
, and
C. A.
Ross
,
J. Appl. Phys.
97
,
063910
(
2005
).
5.
M.
Steiner
and
J.
Nitta
,
Appl. Phys. Lett.
84
,
939
(
2004
).
6.
S. P. D.
Li
,
D.
Peyrade
,
M.
Natali
,
A.
Lebib
,
Y.
Chen
,
U.
Ebels
,
L. D.
Buda
, and
K.
Ounadjela
,
Phys. Rev. Lett.
86
,
1102
(
2001
).
7.
M.
Kläui
,
C. A. F.
Vaz
,
J. A. C.
Bland
, and
L. J.
Heyderman
,
Appl. Phys. Lett.
86
,
032504
(
2005
).
8.
J.
Wang
,
A. O.
Adeyeye
, and
N.
Singh
,
Appl. Phys. Lett.
87
,
262508
(
2005
).
9.
K. Yu.
Guslienko
,
V.
Novosad
,
Y.
Otani
,
H.
Shima
, and
K.
Fukamichi
,
Phys. Rev. B
65
,
024414
(
2001
).
10.
M.
Donahue
and
D.
Porter
, see http://math.nist.gov/oommf/
You do not currently have access to this content.