Electron spin resonance analysis of (100)SiLaAlO3 structures reveals the absence of a SiSiO2-type interface in terms of archetypal Si-dangling bond-type SiSiO2 interface defects (Pb0,Pb1). With no Pb-type defects observed, this state is found to persist during subsequent annealing (5% O2+N2 ambient) up to Tan800°C, indicating a thermally stable and abrupt SiLaAlO3 interface. In the range Tan800860°C, however, a SiSiO2-type interface starts forming as evidenced by the appearance of Pb0 defects and, with some delay in Tan, the EX center (a SiO2 associated defect) attesting to significant structural/compositional modification. The peaking of the defect density versus Tan curves indicates that the interlayer with SiOx nature breaks up upon annealing at Tan930°C, possibly related to crystallization and silicate formation. No LaAlO3-specific point defects could be detected.

1.
International Technology Roadmap for Semiconductors
(
Semiconductor Industry Association
,
San Jose, CA
,
2005
).
2.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
3.
M. A.
Quevedo-Lopez
,
M.
El-Bouanani
,
B. E.
Gnade
,
R. M.
Wallace
,
M. R.
Visokay
,
M.
Douglas
,
M. J.
Bevan
, and
L.
Colombo
,
J. Appl. Phys.
92
,
3540
(
2002
).
4.
J.
Robertson
,
Eur. Phys. J.: Appl. Phys.
28
,
265
(
2004
).
5.
See, e.g.,
W.
Vandervorst
,
B.
Brijs
,
H.
Bender
,
O. T.
Conrad
,
J.
Petry
,
O.
Richard
,
S.
Van Elshocht
,
A.
Delabie
,
M.
Caymax
, and
S.
DeGendt
,
Mater. Res. Soc. Symp. Proc.
745
,
23
(
2003
).
6.
A.
Stesmans
and
V. V.
Afanas’ev
,
J. Phys.: Condens. Matter
13
,
L673
(
2001
);
A.
Stesmans
and
V. V.
Afanas’ev
,
Appl. Phys. Lett.
80
,
1957
(
2002
).
7.
J. L.
Cantin
and
H. J.
von Bardeleben
,
J. Non-Cryst. Solids
303
,
175
(
2002
);
S.
Baldovino
,
S.
Nokrin
,
G.
Scarel
,
M.
Fanciulli
,
T.
Graf
, and
M. S.
Brandt
,
J. Non-Cryst. Solids
322
,
168
(
2003
);
A. Y.
Kang
,
P. M.
Lenahan
,
J. F.
Conley
, Jr.
, and
R.
Solanski
,
Appl. Phys. Lett.
81
,
1128
(
2002
).
8.
R.
Helms
and
E. H.
Poindexter
,
Rep. Prog. Phys.
57
,
791
(
1994
).
9.
10.
A.
Stesmans
,
Phys. Rev. B
48
,
2418
(
1993
).
11.
A.
Stesmans
,
B.
Nouwen
, and
V. V.
Afanas’ev
,
Phys. Rev. B
58
,
15801
(
1998
).
12.
A.
Stesmans
and
V. V.
Afanas’ev
,
J. Appl. Phys.
83
,
2449
(
1998
).
13.
B. E.
Park
and
H.
Ishiwara
,
Appl. Phys. Lett.
79
,
806
(
2001
).
14.
L. F.
Edge
,
D. G.
Schlom
,
R. T.
Brewer
,
Y. J.
Chabal
,
J. R.
Williams
,
S. A.
Chambers
,
C.
Hinkle
,
G.
Lucovsky
,
Y.
Yang
,
S.
Stemmer
,
M.
Copel
,
B.
Holländer
, and
J.
Schubert
,
Appl. Phys. Lett.
84
,
4629
(
2004
).
15.
P.
Sivasubramani
,
M. J.
Kim
,
B. E.
Gnade
,
R. M.
Wallace
,
L. F.
Edge
,
D. L.
Schlom
,
H. S.
Craft
, and
J. P.
Maria
,
Appl. Phys. Lett.
86
,
201901
(
2005
).
16.
A.
Stesmans
and
F.
Scheerlinck
,
Phys. Rev. B
50
,
5204
(
1994
);
A.
Stesmans
and
F.
Scheerlinck
,
J. Appl. Phys.
75
,
1047
(
1994
).
17.
A.
Baumer
,
M.
Stutzmann
,
M. S.
Brandt
,
F. C. K.
Au
, and
S. T.
Lee
,
Appl. Phys. Lett.
85
,
943
(
2004
);
W. E.
Carlos
and
S. M.
Prokes
,
J. Appl. Phys.
78
,
2129
(
1995
);
M.
Dohi
,
H.
Yamatani
, and
T.
Fujita
,
J. Appl. Phys.
91
,
815
(
2002
).
18.
W.
Futako
,
T.
Umeda
,
M.
Nishizawa
,
T.
Yasuda
,
J.
Isoya
, and
S.
Yamasaki
,
J. Non-Cryst. Solids
299-302
,
575
(
2002
).
19.
A.
Stesmans
and
V. V.
Afanas’ev
,
J. Appl. Phys.
97
,
033510
(
2004
).
You do not currently have access to this content.