Coupled-cavity hexagonal ringlike photonic crystal lasers are fabricated as a class of single mode photonic crystal laser light sources. The structures are formed by placing one missing hole nanocavity (H1 type) between each two segments at 60° that form the hexagonal ringlike photonic crystal laser. The H1 cavities act as a mode filter, clamping the frequency of emission of the laser device. The emission frequency in these rings with cavities varies as the filling factor is changed, allowing the tuning of the laser emission. Stable single mode lasing occurs with side mode suppression greater than 20dB. This kind of devices may be used as an efficient selective filter of modes and may have important applications in future photonic devices for optical communications and optical sensing.

1.
E.
Yablonovitch
,
Phys. Rev. Lett.
58
,
2059
(
1987
).
3.
J. D.
Joannopoulos
,
R. D.
Meade
, and
J. N.
Winn
,
Photonic Crystals: Molding the Flow of Light
(
Princeton University Press
,
Princeton, NJ
,
1995
).
4.
O.
Painter
,
R. K.
Lee
,
A.
Scherer
,
A.
Yariv
,
J. D.
O’Brien
,
P. D.
Dapkus
, and
I.
Kim
,
Science
284
,
1819
(
1999
).
5.
X.
Letartre
,
C.
Seassal
,
C.
Grillet
,
P.
Rojo-Romeo
,
P.
Viktorovitch
,
M. L.
d’Yerville
,
D.
Cassagne
, and
C.
Jouanin
,
Appl. Phys. Lett.
79
,
2312
(
2001
).
6.
S.
Olivier
,
H.
Benisty
,
M.
Rattier
,
C.
Weisbuch
,
M.
Qiu
,
A.
Karlsson
,
C. J. M.
Smith
,
R.
Houdre
, and
U.
Oesterle
,
Appl. Phys. Lett.
79
,
2514
(
2001
).
7.
S. H.
Kim
,
H. Y.
Ryu
,
H. G.
Park
,
G. H.
Kim
,
Y. S.
Choi
,
Y. H.
Lee
, and
J. S.
Kim
,
Appl. Phys. Lett.
81
,
2499
(
2002
).
8.
S. L.
McCall
,
A. F. J.
Levi
,
R. E.
Slusher
,
S. J.
Pearton
, and
R. A.
Logan
,
Appl. Phys. Lett.
60
,
289
(
1992
).
9.
J. P.
Zhang
,
D. Y.
Chu
,
S. L.
Wu
,
S. T.
Ho
,
W. G.
Bi
,
C. W.
Tu
, and
R. C.
Tiberio
,
Phys. Rev. Lett.
75
,
2678
(
1995
).
10.
T. D.
Happ
,
M.
Kamp
, and
A.
Forchel
,
Opt. Lett.
26
,
1102
(
2001
).
11.
C.
Monat
,
C.
Seassal
,
X.
Letartre
,
P.
Regreny
,
M.
Gendry
,
P. R.
Romeo
,
P.
Viktorovitch
,
M. L.
d’Yerville
,
D.
Cassagne
,
J. P.
Albert
,
E.
Jalaguier
,
S.
Pocas
, and
B.
Aspar
,
J. Appl. Phys.
93
,
23
(
2003
).
12.
H. Y.
Ryu
,
J. K.
Hwang
, and
Y. H.
Lee
,
J. Appl. Phys.
88
,
4941
(
2000
).
13.
O. J.
Painter
,
A.
Husain
,
A.
Scherer
,
J. D.
O’Brien
,
I.
Kim
, and
P. D.
Dapkus
,
J. Lightwave Technol.
17
,
2082
(
1999
).
14.
C.
Monat
,
C.
Seassal
,
X.
Letartre
,
P.
Viktorovitch
,
P.
Regreny
,
M.
Gendry
,
P.
Rojo-Romeo
,
G.
Hollinger
,
E.
Jalaguier
,
S.
Pocas
, and
B.
Aspar
,
Electron. Lett.
37
,
764
(
2001
).
15.
A. R.
Alija
,
L. J.
Martinez
,
A.
Garcia-Martin
,
M. L.
Dotor
,
D.
Golmayo
, and
P. A.
Postigo
,
Appl. Phys. Lett.
86
,
141101
(
2005
).
16.
P.
Pottier
,
C.
Seassal
,
X.
Letartre
,
J. L.
Leclercq
,
P.
Viktorovitch
,
D.
Cassagne
, and
C.
Jouanin
,
J. Lightwave Technol.
17
,
2058
(
1999
).
17.
T. D.
Happ
,
M.
Kamp
,
A.
Forchel
,
J. L.
Gentner
, and
L.
Goldstein
,
Appl. Phys. Lett.
82
,
4
(
2003
).
18.
L. J.
Martínez
,
A.
García-Martín
, and
P. A.
Postigo
,
Proc. SPIE
5840
,
879
(
2005
).
You do not currently have access to this content.