Atomic force microscope (AFM) is now a standard imaging tool in laboratories but has displayed limited capability of nanolithography. We discover that an internal tensile strain exists in poly(3-hexylthiophene-2,5-diyl) (P3HT) films, and the physical effect is utilized to achieve highly tunable and high-throughput nanolithography. Trenches with widths spanning nearly two orders of magnitude from 40nmto2.3μm are fabricated. We show that P3HT is also excellent for pattern transfer to inorganic materials. Furthermore, a lithography speed of 0.5mms is achieved, which is a few orders of magnitude higher than other known methods of AFM-based nanolithography.

1.
G.
Binnig
,
C. F.
Quate
, and
Ch.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
2.
For a review see
R.
García
and
R.
Pérez
,
Surf. Sci. Rep.
47
,
197
(
2002
).
3.
P.
Vettiger
,
M.
Despont
,
U.
Drechsler
,
U.
Dűrig
,
W.
Häberle
,
M. I.
Lutwyche
,
H. E.
Rothuizen
,
R.
Stutz
,
R.
Widmer
, and
G. K.
Binnig
,
IBM J. Res. Dev.
44
,
323
(
2000
).
4.
B.
Irmer
,
M.
Kehrle
,
H.
Lorenz
, and
J. P.
Kotthaus
,
Appl. Phys. Lett.
71
,
1733
(
1997
).
5.
Y.
Kim
and
C. M.
Lieber
,
Science
257
,
375
(
1992
).
6.
M.
Rolandi
,
I.
Suez
,
H.
Dai
, and
J. M. J.
Fréchet
,
Nano Lett.
4
,
889
(
2004
).
7.
E. S.
Snow
and
P. M.
Campbell
,
Science
270
,
1639
(
1995
).
8.
A.
Fuhrer
,
S.
Luscher
,
T.
Ihn
,
T.
Heinzel
,
K.
Ensslin
,
W.
Wegscheider
, and
M.
Bichler
,
Nature (London)
413
,
822
(
2001
).
9.
D.
Wouters
and
U. S.
Schubert
,
Angew. Chem.
43
,
2480
(
2004
).
10.
R.
Crook
,
A. C.
Graham
,
C. G.
Smith
,
I.
Farrer
,
H. E.
Beere
, and
D. A.
Ritchie
,
Nature (London)
424
,
751
(
2003
).
11.
A.
Majumdar
,
P. I.
Oden
,
J. P.
Carrejo
,
L. A.
Nagahara
,
J. J.
Graham
, and
J.
Alexander
,
Appl. Phys. Lett.
61
,
2293
(
1992
).
12.
T. C.
Chang
,
C. S.
Chang
,
H. N.
Lin
, and
T. T.
Tsong
,
Appl. Phys. Lett.
67
,
903
(
1995
).
13.
R.
Magno
and
B. R.
Bennett
,
Appl. Phys. Lett.
70
,
1855
(
1997
).
14.
J.
Cortes Rosa
,
M.
Wendel
,
H.
Lorenz
,
J. P.
Kotthaus
,
M.
Thomas
, and
H.
Kroemer
,
Appl. Phys. Lett.
73
,
2684
(
1998
).
15.
H. W.
Schumacher
,
U. F.
Keyser
,
U.
Zeitler
,
R. J.
Haug
, and
K.
Eberl
,
Appl. Phys. Lett.
75
,
1107
(
1999
).
16.
M.
Versen
,
B.
Klehn
,
U.
Kunze
,
D.
Reuter
, and
A. D.
Wieck
,
Ultramicroscopy
82
,
159
(
2000
).
17.
M.
Wendal
,
S.
Kühn
,
H.
Lorenz
,
J. P.
Kotthaus
, and
M.
Holland
,
Appl. Phys. Lett.
65
,
1775
(
1994
).
18.
B.
Klehn
and
U. J.
Kunze
,
J. Appl. Phys.
85
,
3897
(
1999
).
19.
L. L.
Sohn
and
R. L.
Willet
,
Appl. Phys. Lett.
67
,
1552
(
1995
).
20.
A.
Avramescu
,
K.
Uesugi
, and
I.
Suemune
,
Jpn. J. Appl. Phys., Part 1
36
,
4057
(
1997
).
21.
B.
Cappella
,
H.
Sturm
, and
S. M.
Weidner
,
Polymer
43
,
4461
(
2002
).
22.
U.
Kunze
and
B.
Klehn
,
Adv. Mater. (Weinheim, Ger.)
11
,
1473
(
1999
).
23.
X.
Jin
and
W. N.
Unertl
,
Appl. Phys. Lett.
61
,
657
(
1992
).
24.
A. A.
Tseng
,
A.
Notarigiacomo
, and
T. P.
Chen
,
J. Vac. Sci. Technol. B
23
,
877
(
2005
).
25.
K.
Bouzehouane
,
S.
Fusil
,
M.
Bibes
,
J.
Carrey
,
T.
Blon
,
M.
Le Dŭ
,
P.
Seneor
,
V.
Cros
, and
L.
Vila
,
Nano Lett.
3
,
1599
(
2003
).
26.
M.
Wendel
,
H.
Lorenz
, and
J. P.
Kotthaus
,
Appl. Phys. Lett.
67
,
3732
(
1995
).
27.
C.
Balocco
,
A. M.
Song
,
M.
Åberg
,
A.
Forchel
,
T.
González
,
J.
Mateos
,
I.
Maximov
,
M.
Missous
,
A. A.
Razazadeh
,
J.
Saijets
,
L.
Samuelson
,
D.
Wallin
,
K.
Williams
,
L.
Worschech
, and
H. Q.
Xu
,
Nano Lett.
5
,
1423
(
2005
).
28.
T.-H.
Fang
,
C.-I.
Weng
, and
J.-G.
Chang
,
Nanotechnology
11
,
181
(
2000
).
You do not currently have access to this content.