The deformation mechanism of nanocrystalline Ni (with grain sizes in the range of 30–100 nm) at ultrahigh strain rates (>107s1) was investigated. A laser-driven compression process was applied to achieve high pressures (20–70 GPa) on nanosecond timescales and thus induce high-strain-rate deformation in the nanocrystalline Ni. Postmortem transmission electron microscopy examinations revealed that the nanocrystalline structures survive the shock deformation, and that dislocation activity is a prevalent deformation mechanism for the grain sizes studied. No deformation twinning was observed even at stresses more than twice the threshold for twin formation in micron-sized polycrystals. These results agree qualitatively with molecular dynamics simulations and suggest that twinning is a difficult event in nanocrystalline Ni under shock-loading conditions.

1.
J.
Schiøtz
and
K. W.
Jacobsen
,
Science
301
,
1357
(
2003
).
2.
V.
Yamakov
,
D.
Wolf
,
S. R.
Phillpot
,
A. K.
Mukherjee
, and
H.
Gleiter
,
Philos. Mag. Lett.
83
,
385
(
2003
).
3.
H.
Van Swygenhoven
,
P. M.
Derlet
, and
A. G.
Frøseth
,
Nat. Mater.
3
,
399
(
2004
).
4.
D.
Jia
,
K. T.
Ramesh
,
E.
Ma
,
L.
Lu
, and
K.
Lu
,
Scr. Mater.
45
,
613
(
2001
).
5.
F. Dalla
Torre
,
H.
Van Swygenhoven
, and
M.
Victoria
,
Acta Mater.
50
,
3957
(
2002
).
6.
E. M.
Bringa
,
A.
Caro
,
Y. M.
Wang
,
M.
Victoria
,
J. M.
McNaney
,
B. A.
Remington
,
R. F.
Smith
,
B.
Torralva
, and
H.
Van Swygenhoven
,
Science
309
,
1838
(
2005
).
7.
E. V.
Esquivel
,
L. E.
Murr
,
E. A.
Trillo
, and
M.
Baquera
,
J. Mater. Sci.
38
,
2223
(
2003
).
8.
P. S.
Follansbee
and
G. T.
Gray
,
Int. J. Plast.
7
,
651
(
1991
).
9.
F.
Greulich
and
L. E.
Murr
,
Mater. Sci. Eng.
,
39
,
81
(
1979
).
10.
J.
Edwards
,
K. T.
Lorenz
,
B. A.
Remington
,
S.
Pollaine
,
J.
Colvin
,
D.
Braun
,
B. F.
Lasinski
,
D.
Reisman
,
J. M.
McNaney
,
J. A.
Greenough
,
R.
Wallaoe
,
H.
Louis
, and
D.
Kalantar
,
Phys. Rev. Lett.
92
,
075002
(
2004
).
11.
C. A.
Schuh
,
T. G.
Nieh
, and
T.
Yamasaki
,
Scr. Mater.
46
,
735
(
2002
).
12.
Y. M.
Wang
,
E.
Ma
, and
A. V.
Hamza
,
Appl. Phys. Lett.
86
,
241917
(
2005
).
13.
Y. M.
Wang
,
S.
Cheng
,
Q. M.
Wei
,
E.
Ma
,
T. G.
Nieh
, and
A. V.
Hamza
,
Scr. Mater.
51
,
1023
(
2004
).
14.
J. M.
McNaney
,
J.
Edwards
,
R.
Becker
,
T.
Lorenz
, and
B.
Remington
,
Metall. Mater. Trans. A
35A
,
2625
(
2004
).
15.
C.
Völkert
(private communication).
16.
K. M.
Youssef
,
R. O.
Scattergood
,
K. L.
Murty
,
J. A.
Horton
, and
C. C.
Koch
,
Appl. Phys. Lett.
87
,
091904
(
2005
).
17.
Z.
Budrovic
,
H.
Van Swygenhoven
,
P. M.
Derlet
,
S.
Van Petegem
, and
B.
Schmitt
,
Science
304
,
273
(
2004
).
18.
M. A.
Meyers
,
F.
Gregori
,
B. K.
Kad
,
M. S.
Schneider
,
D. H.
Kalantar
,
B. A.
Remington
,
G.
Ravichandran
,
T.
Boehly
, and
J. S.
Wark
,
Acta Mater.
51
,
1211
(
2003
).
19.
M. A.
Meyers
,
O.
Vöhringer
, and
V. A.
Lubarda
,
Acta Mater.
49
,
4025
(
2001
).
20.
X. Z.
Liao
,
Y. H.
Zhao
,
S. G.
Srinivasan
,
Y. T.
Zhu
,
R. Z.
Valiev
, and
D. V.
Gunderov
,
Appl. Phys. Lett.
84
,
592
(
2004
).
You do not currently have access to this content.