It is shown that unidirectionally aligned carbon nanotubes can be grown on electrically conductive network of carbon microfibers via control of buffer layer material and applied electric field during dc plasma chemical vapor deposition growth. Ni catalyst deposition on carbon microfiber produces relatively poorly aligned nanotubes with significantly varying diameters and lengths obtained. The insertion of Ti 5nm thick underlayer between Ni catalyst layer and C microfiber substrate significantly alters the morphology of nanotubes, resulting in much better aligned, finer diameter, and longer array of nanotubes. This beneficial effect is attributed to the reduced reaction between Ni and carbon paper, as well as prevention of plasma etching of carbon paper by inserting a Ti buffer layer. Such a unidirectionally aligned nanotube structure on an open-pore conductive substrate structure may conveniently be utilized as a high-surface-area base electrodes for fuel cells, batteries, and other electrochemical and catalytic reactions.

1.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
2.
H.
Dai
,
J. H.
Hafner
,
A. G.
Rinzler
,
D. T.
Colbert
, and
R.
Smalley
,
Nature (London)
384
,
187
(
1996
).
3.
L.
Forro
and
C.
Schnonenberger
,
Carbon Nanotubes Synthesis, Structure, Properties and Applications
(
Springer
,
New York
,
2001
), p.
329
.
4.
T.
Hertel
,
R.
Martel
, and
P.
Avouris
,
J. Phys. Chem. B
102
,
910
(
1998
).
5.
M. A.
Guillorn
,
A. V.
Melechko
,
V. I.
Merkulov
,
E. D.
Ellis
,
M. L.
Simpson
,
L. R.
Baylor
, and
G. J.
Bordonaro
,
J. Vac. Sci. Technol. B
19
,
2598
(
2001
).
6.
C.
Bower
,
W.
Zhu
,
D.
Shalom
,
D.
Lopez
,
L. H.
Chen
,
P. L.
Gammel
, and
S.
Jin
,
Appl. Phys. Lett.
80
,
3820
(
2002
).
7.
K. B.
Teo
,
M.
Chhowalla
,
G. A.
Amaratunga
,
W. I.
Miline
,
P.
Legagneux
,
G.
Pirio
,
L.
Gangloff
,
D.
Pribat
,
V.
Semet
,
V. T.
Binh
,
W. H.
Bruenger
,
J.
Eichholz
,
H.
Hanssen
,
D.
Friedrich
,
S. B.
lee
,
D. G.
Hasko
, and
H.
Ahmed
,
J. Vac. Sci. Technol. B
21
,
693
(
2003
).
8.
J. M.
Planeiz
,
N.
Coustel
,
B.
Coq
,
V.
Brotons
,
P. S.
Kumbhar
,
R.
Dutartre
,
P.
Geneste
,
P.
Bernier
, and
P. M.
Ajayan
,
J. Am. Chem. Soc.
116
,
7935
(
1994
).
9.
A. C.
Dillon
,
K. M.
Jones
,
T. A.
Bekkedahl
,
C. H.
Kiang
,
D. S.
Bethune
, and
M. J.
Heben
,
Nature (London)
386
,
377
(
1997
).
10.
G. E.
Gadd
,
M.
Blackfold
,
S.
Moricca
,
N.
Webb
,
P. J.
Evans
,
A. M.
Smith
,
G.
Jacobsen
,
S.
Leung
,
A.
Day
, and
Q.
Hua
,
Science
277
,
933
(
1997
).
11.
S. S.
Wong
,
J. D.
Harper
,
P. T.
Lansbury
, and
C. M.
Lieber
,
J. Am. Chem. Soc.
120
,
603
(
1998
).
12.
L.-H.
Chen
,
J. F.
AuBuchon
,
A.
Gapin
,
C.
Daraio
,
P.
Bandaru
,
S.
Jin
,
D. W.
Kim
, and
I. K.
Yoo
,
Appl. Phys. Lett.
85
,
5373
(
2004
).
13.
M.
Chhowalla
,
K. B. K.
Teo
,
C.
Ducati
,
N. L.
Rupesinghe
,
G. A. J.
Amaratunga
,
A. C.
Ferrari
,
D.
Roy
,
J.
Robertson
, and
W. I.
Milne
,
J. Appl. Phys.
90
,
5308
(
2001
).
14.
J. F.
AuBuchon
,
L.-H.
Chen
,
A. I.
Gapin
,
D.-W.
Kim
,
C.
Daraio
, and
S.
Jin
,
Nano Lett.
4
,
1781
(
2004
).
15.
C.
Wang
,
M.
Waje
,
X.
Wang
,
J. M.
Tang
,
R. C.
Haddon
, and
Y.
Yan
,
Nano Lett.
4
,
345
(
2004
).
16.
N. R.
Franklin
,
Y.
Li
,
R. J.
Chen
,
A.
Javey
, and
H.
Dai
,
Appl. Phys. Lett.
79
,
4571
(
2001
).
17.
D. B.
Hash
and
M.
Meyyappan
,
J. Appl. Phys.
93
,
750
(
2003
).
You do not currently have access to this content.